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12
Analysisand Estimation

In the 1950s,Harold Edwin Hurst
(1880–1978), a British physicist
who spent a great deal of his life
in Egypt, developed rescaled range
analysis, a statistical measure that
revealed long-term dependence and
the absence of a characteristic scale
in the outflows of the River Nile.

Working with James A. Barnes in
the 1960s, the American physicist
David W. Allan (born 1936) in-
troduced a measure of variability
based on differences between suc-
cessive numbers of events; compu-
tation of the Allan variance makes
use of Haar wavelets.
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Given a segment of a fractal-based point process, it is often desirable to identify
the point-process model that predicts the data as closely as possible; this can help
to elucidate the mechanisms that underlie the data. In particular, we often wish to
estimate the fractal exponent that characterizes the data.

Because of the sparseness of point-process data, however, the identification of a
point process is a difficult enterprise. Under many circumstances it cannot be achieved
even in principle. Nevertheless, a few situations exist in which we can identify the
underlying point process by using a number of statistics in concert. More often, as we
will demonstrate in Sec. 12.1 by example, only partial identification can be achieved
by analyzing the point process.

Since the estimation problem is far more amenable to solution than is the identifi-
cation problem, we devote the lion’s share of this chapter to investigating procedures
for estimating fractal-related parameters associated with an arbitrary fractal-based
point process. As discussed in Sec. 12.2.1, we take a nonparametric approach to
estimation, making no assumptions about the nature of the point process. We devote
particular attention to obtaining estimates for the fractal exponentα̂; the bias, stan-
dard deviation, and root-mean-square error of the estimators are of principal interest.
We discuss heart rate variability analysis as an example in which careful estimation
of the fractal exponent is important.

We obtain our results by making use of simulations of a fractal-Gaussian-process-
driven Poisson process, which we introduced in Sec. 6.3.3, using a typical set of
parameters. We make use of this process because of its widespread applicability, as
discussed in Sec. 12.2.3. The simulations enable us to compare the performance of
a large collection of estimators, as detailed in Sec. 12.3. Within the bounds of our
study, as discussed in Sec. 12.4, the normalized Haar-wavelet varianceÂ(T ) and the
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IDENTIFICATION OF FRACTAL-BASED POINT PROCESSES 271

rate spectrum̂Sλ(f, T ) emerge as measures of choice for estimating fractal exponents
associated with unidentified fractal-based point processes.

For the particular set of parameters examined, we achieve optimal fractal-exponent
estimation using the normalized Haar-wavelet varianceÂ(T )−1 with five geometri-
cally spaced counting times per decade, weighting of these counting times by1/

√
T ,

andoversampling of the point process by a factor of two. Optimal estimation using
the rate-based spectrum is achieved by withŜλ(f, T ) − Ê[µ] and calls for the use
of uniformly spaced frequency intervals. The performance of the normalized Haar-
wavelet variance slightly exceeds that of the rate-based spectrum, albeit at increased
computational cost.

Although we expect the estimation results established in this chapter to prove
useful in most circumstances, we caution the reader that thea priori information
available within the realm of all possible experimental scenarios spans far too wide a
range for one approach to yield the best results in all cases.

12.1 IDENTIFICATION OF FRACTAL-BASED POINT PROCESSES

We have discussed the identification problem from a simple perspective in Secs. 5.5.4
and 11.5.3, and in a number of Problems sprinkled throughout the text.1 We will
again revisit the point-process identification issue in Sec. 13.6, in connection with
computer network traffic.

The identification of the underlying point-process associated with an observed
point process is possible only in special cases. More often, the analysis of a point
process leads to the identification of only some of its features. Such partial identifi-
cation is highlighted by the following examples:

• If the estimated rate spectrum (Sec. 3.4.5) of the process,Ŝλ(f, T ), strongly
indicates the presence fractal behavior, whereas the estimated interval spectrum
(Sec. 3.3.3) of the process,Ŝτ (f), does not, then the point process under study
may well belong to the family of fractal renewal processes, as discussed in
Sec. 5.5.4.

We can confirm this presumption by shuffling the intervals and then recom-
puting the spectra, which provides a nonparametric test of this hypothesis (see
Sec. 11.5). A renewal process, whether fractal or not, is invariant to such shuf-
fling since its interevent intervals are independent and identically distributed.
Surrogate data analysis permits us to achieve a good measure of discrimination
between fractal and fractal-rate point processes, as discussed in Sec. 11.5.3. It
also generally permits the separation of the fractal and nonfractal features of a
point process.

1 See, in particular, Probs. 5.2, 5.3, 5.4, 5.5, 6.8, 7.7, 7.8, 7.9, 7.10, 10.6, 10.7, 10.8, 10.9, 11.3, and 11.12.
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272 ANALYSIS AND ESTIMATION

The estimated generalized dimensionD̂q (Sec. 3.5.4) frequently offers a means
for definitively discriminating between fractal-rate and fractal point processes
(Prob. 5.5).

• In the domain of doubly stochastic Poisson processes (Sec. 4.3), a fractal-
binomial-noise-driven Poisson processdN(t) (Sec. 8.4) comprising a small
numberM of component alternating fractal renewal processesX(t) exhibits
a particular interevent interval probability densitypτ (t). When the underlying
fractal binomial noiseXΣ(t) (Sec. 8.3.1) assumes a value of zero, no events con-
tribute todN(t). Otherwise,dN(t) comprises a locally homogeneous Poisson
process, with relatively few intervals spanning changes in the rate; this yields
an interval density that consists of sums of exponentials.

The overall interval densitypτ (t) therefore approximates exponential decay
for short times and power-law decay for longer times. This behavior is most
evident when the mean rate ofdN(t) greatly exceeds the mean switching rates
of the constituent alternating renewal processesX(t), and it requires that at
least the off times forX(t) have a power-law distribution.

• Similarly, the interevent-interval density of a fractal-shot-noise-driven Poisson
process (Sec. 10.3) can sometimes reveal the statistics of the times between the
primary events. When the rate of the primary Poisson process is sufficiently
small in comparison with the durations of the impulse response functions, sig-
nificant periods of time elapse between the termination of one impulse response
function and the arrival of the next primary event. During this period, no in-
tervals can occur. Therefore,pτ (t) essentially follows the form of the primary
Poisson process, as provided in Eq. (10.22).

We also note some of the manifold difficulties associated with point-process iden-
tification:

• In general, no single statistic is sufficient to identify or characterize a fractal-
based point process.

• Even the partial identification of a fractal-based point process generally re-
quires a large quantity of data. Consider the fractal-shot-noise-driven Poisson
process discussed above as an example. The interval densitypτ (t) for β = 1

2
(dottedcurve in Fig. 10.6) differs from the homogeneous-Poisson-process den-
sity [Eq. (4.3)] only for the largest10−10 of the intervals.

• A general difficulty associated with identifying fractal-rate point processes
stems from the fact that the process of generating point events from a rate
process destroys information about fluctuations in the rate that occur over time
scales shorter than the local interevent interval. Hence, the sampling eradicates
detail that is an intrinsic part of the rate process (see Sec. 5.5.4).

As an example, one can choose parameters for which it is quite easy to distin-
guish segments of: (1) a fractal Gaussian process (Sec. 6.3.3), (2) fractal bino-
mial noise (Sec. 8.3.1), and (3) fractal shot noise (Chapter 9). However, when
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FRACTAL PARAMETER ESTIMATION 273

used as rates for a Poisson process, these three diverse rate functions can yield
essentially indistinguishable fractal-rate point processes (but see Prob. 12.1).

As another example, given the superposition of a fractal doubly stochastic
Poisson process and a homogeneous Poisson process, it is nearly impossible to
distinguish the individual component processes.

• The identification of fractal-based point processes is confounded by the large
variety of forms that they take, many of which have quite similar statistics.
One can easily construct a collection of distinct processes that do not belong
to any of the families that we have considered. For example, we can apply the
block-shuffling operation (Sec. 11.5.1) to a fractal-shot-noise-driven Poisson
process.

The identification problem proves a bit less difficult for the family of integrate-and-
reset point processes (Sec. 4.4), by virtue of their deterministic kernel. Nevertheless,
just as with the Poisson kernel, all information resident in the rate over time scales
significantly shorter than the local interevent time is not carried forward to the ensuing
point process.

12.2 FRACTAL PARAMETER ESTIMATION

We turn now to parameter estimation for fractal-based point processes. This is a far
easier task than identification.

Well-established techniques are available for estimating various conventional mea-
sures of a point process, such as the mean and variance of the interevent intervals,
the mean rate of the process, and more complex measures such as the spectrum (see,
for example, Cox & Lewis, 1966). We expressly consider theestimation of fractal
parametersin point processes, a topic that has received scant attention.

12.2.1 Nonparametric estimation

We cast the estimation problem as follows: Given a segment of a fractal-rate point
process, we seek an estimateα̂ of the true fractal exponentα of the entire process
from which the segment was extracted. We often seek an estimate of the onset time
or frequency as well. Several effects contribute to estimation error for finite-length
segments, regardless of the methods used (Lowen & Teich, 1995; Thurner et al.,
1997).

The fractal exponent provides a measure of the relative strengths of fluctuations
over various time or frequency scales; a particular fractal exponent leads to a particular
distribution of power over these scales. Variance in the estimated values stems from
the inherent randomness of the strengths of fluctuations in finite data sets. A collection
of finite realizations of a fractal-based point process with the same parameters will
exhibit fractal fluctuations of varying strengths, thereby leading to a distribution of
estimated fractal exponents and onset times or frequencies.
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274 ANALYSIS AND ESTIMATION

Whereas fluctuations lead to variance in estimators, cutoffs lead to bias. Cutoffs
arise from limitations in the measurement process: noise and finite precision lead to
a minimum practical time scale, whereas the limited duration of any data set defines
a maximum time scale (see Sec. 2.3.1). Cutoffs can also derive from the data itself,
such as when behavior with different characteristics (nonfractal or even fractal with
a different exponent) occurs over adjacent time-scale ranges.

Although algorithms exist that can accurately compensate for the effects of vari-
ance and bias, they presuppose detaileda priori knowledge of the process, which
violates the principle of estimating an unknown signal. We therefore do not attempt
to compensate for these effects in this manner, except for very simple cases justified by
previous knowledge of the system that generates the data. Indeed, we do not attempt
to specifically estimate parameters for a fractal point process; rather we employ the
formalism of a fractal-rate point process, which is encountered far more frequently.

In particular, we do not consider maximum-likelihood techniques because they
require an exact model, despite the fact that they yield the best possible performance
in a certain sense. By definition, applying one model to data generated by another
model no longer yields the maximum-likelihood estimate of a parameter; instead
it returns an estimate of unknown utility. Furthermore, even when knowledge of a
model does permit the use of maximum-likelihood methods, the loss of accuracy
entailed in employing a nonparametric estimation technique is small (Veitch & Abry,
1999). We therefore eschew maximum-likelihood and related techniques in favor of
a nonparametric approach.

A closely related issue pertains to selecting the range of times or frequencies over
which to calculate a fractal measure. Given a monofractal model, aχ2-approach
provides a powerful tool for automatically selecting the appropriate power-law re-
gion (Abry et al., 2000). Indeed, selection of the appropriate scaling range proves
both important and nontrivial in the general case (see Abry et al., 2000, 2003, for a
discussion of this issue). However, since this selection also depends on the decision
criterion (χ2 limit vs. range of dependent variable), we provide estimates of fractal
exponents over several different ranges of time or frequency.

As an aside, sucha priori knowledge also plays an important role in estimating
fractal exponents for discrete-time processes. Some estimators have superb charac-
teristics when applied to data generated from a restricted class of models but perform
poorly in general, whereas robust estimators yield good (but not superb) results in
many cases (Taqqu, Teverovsky & Willinger, 1995). Often a speed

/
accuracy tradeoff

exists as well. Again, detailed knowledge of the underlying model permits the use of
an estimation technique tailored to the data at hand.

12.2.2 Example: Fractal exponent of the human heartbeat

The human heartbeat provides an example of the usefulness of estimating the fractal
exponent of a point process. Fluctuations in the sequence of heartbeat interevent
intervals, over time scales ranging from minutes to hours, can help assess the presence
of, and likelihood of acquiring, cardiovascular disease (Malik et al., 1996). This
noninvasive approach has come to be calledheart rate variability (HRV) analysis

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



FRACTAL PARAMETER ESTIMATION 275

(Hon & Lee, 1965), whether attention is directed to fluctuations of the actual heart
rate or of the interevent intervals.

A whole host of heart-rate-variability measures have been developed and examined
over the years. Although the vast majority of these are nonfractal (scale dependent) in
nature, the fractal exponentŝα associated with a number of measures have become a
part of the armamentarium used for the analysis of the heartbeat point process. These
measures include the interval-based spectrumŜτ (f) (Kobayashi & Musha, 1982;
Turcott & Teich, 1996), the normalized interval-based Haar-wavelet varianceÂτ (k)
(Thurner et al., 1998; Ashkenazy et al., 1998), the rate spectrumŜλ(f, T ) (Turcott
& Teich, 1996), and the normalized Haar-wavelet count varianceÂ(T ) (Turcott &
Teich, 1993, 1996).

Heart-rate-variability measures that can discriminate patients with congestive heart
failure from normal subjects have received particular attention. Teich et al. (2001)
recently carried out such a study using 16 measures, of which five were scaling
exponents:α̂Aτ , α̂Sτ , α̂A, α̂Y , andα̂U . The results of this investigation revealed
that the interval-based Haar-wavelet variance at a scale near 32 heartbeat intervals,
Âτ (32), along with its interval-based spectral counterpart near 1/32 cycles/interval,
Ŝτ (1/32), are the most reliable of the measures, even for electrocardiogram records
just minutes long. However, some evidence suggests that the scaling exponents
α̂Aτ andα̂Y outperform scale-dependent measures for predictingmortality following
myocardial infarction (Ashkenazy et al., 2001). Hence, heart-rate-variability analysis
provides an example in which careful estimation of the fractal exponent is an important
task.

12.2.3 Simulation and fractal-exponent estimation

To illustrate how the fractal exponent of a point process may be estimated using
nonparametric techniques, we turn to a specific, but important, example: thefractal-
Gaussian-process-driven Poisson processintroduced in Sec. 6.3.3. This point pro-
cess has widespread applicability and therefore provides a good testbed for our anal-
ysis.

We generate the fractal Gaussian driving process via a simple spectral method
(Peitgen & Saupe, 1988) that enables us to use the fast Fourier transform with an
array of sizeM = 217 = 131 072. After the inverse Fourier transform, we discard
half of the array to reduce periodicity effects, leavingM/2 = 216 = 65 536 ele-
ments. We use a simulation durationL0 = 1.1× 104. Each element of the resulting
fractal Gaussian process therefore corresponds to a duration of2L0/M

.= 0.167847,
and serves as the rate for a (locally) homogeneous Poisson process for that same
duration. Thus, every2L0/M time units, the rate changes to the value specified by
the next element in the array. While this method yields a good approximation to a
fractal Gaussian process over long time scales, the piecewise-constant construction
essentially eliminates fluctuations over time scales significantly shorter than2L0/M .

As discussed in Secs. 6.1 and 6.2, Gaussian processes in general, and fractal Gaus-
sian processes in particular, can assume negative values. These are not permitted for
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276 ANALYSIS AND ESTIMATION

point-process rate functions and must be eliminated. Eschewing nonlinear meth-
ods for dealing with this issue, we instead choose a mean rate that yields positive
elements in all simulations. For the example at hand, we chose the parameters as
follows: mean rateE[µ] = 100, durationL0 = 1.1× 104, fractal exponentα = 0.8,
and onset frequencyfS = 0.2. The resulting rate has a coefficient of variation
Cµ

.= 0.176181. ForM/2 = 65 536 and 100 simulations, the complementary error
function provides that all rates lie above zero with a probability greater than 0.95,
and indeed this was the case for our simulations.2 For some of the interval-based
measures we examine, it proves simpler to employ data sets for which the number
of intervals is an integral power of two. The simulations have an expected number
of events equal to1 100 000; of the 100 simulations generated, the one with the least
number of events has1 067 365. We therefore retain the first220 = 1 048 576 of
the intervals in each of the 100 simulations. A further rationale for the choice of
these particular values will emerge as the chapter unfolds. These truncated simula-
tions have total durationsL that vary; by construction, none can exceed the value
L0 = 11 000 employed in the original simulations. We measureÊ[L] = 10 511.2
(yielding Ê[τ ] = Ê[L]/N = 10 511.2/1 048 576 .= 0.010024) and σ̂L = 187.0.
Finally, within simulations the variability in the rate slightly favors small and large
intervals at the expense of the mean, yielding an average interval coefficient of vari-
ation Ê[Cτ ] = 1.0327. For the homogeneous Poisson process, in contrast, such
variability does not occur, and we haveCτ = 1 exactly (see Sec. 4.1).

We begin by examining the estimation of the fractal exponent via the normalized
Haar-wavelet variancêA(T ). As discussed in Sec. 3.4.3, Allan and Barnes introduced
the unnormalized version of this measure for discrete-time processes in 1966. The
presentation in this section is intended to serve as an example that provides a general
format for carrying out the analysis. The performance of other measures set forth in
Chapter 3 will follow in subsequent sections of this chapter. We will carry out a more
thorough study of fractal-exponent estimation viaÂ(T ) in Sec. 12.3.8.

To first order, the estimated normalized Haar-wavelet variance should increase as
a power-law function of the counting time, which, according to Eq. (5.2), obeys

Â(T ) ≈ (T/TA)α. (12.1)

A representation that is more suitable in many cases follows the relation

Â(T ) ≈ 1 + (T/TA)α, (12.2)

as provided in Eq. (5.6). We performed the simulations detailed above, and estimated
the normalized Haar-wavelet variancêA(T ) at a sequence of counting timesT for
each of the 100 runs separately. As with prior displays of the normalized Haar-wavelet
variance, we chose these to increase geometrically by factors of100.1, thereby pro-
viding 10 counting times per decade of the overall counting-time range considered.

2 The strong correlations among the rates makes this probability still closer to unity.
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THEORYSIMULATIONNORMALIZED HAAR-WAVELET VARIANCE

COUNTING TIME TESTIMATED
NHWVb A(T)

10310210110010�110�2
102101100

Fig. 12.1 Estimated normalized Haar-wavelet varianceÂ(T ) vs. counting timeT for a
fractal-Gaussian-process-driven Poisson process. Using different random seeds, we simulated
100 runs of this process and estimated the normalized Haar-wavelet variance for each. We
present the mean value (center solid curve) and mean± one standard deviation (upper and
lower solid curves) for these simulations. The corresponding three theoretical (dashed) curves
derive from Eqs. (5.44), (5.45), (12.21), and (12.25). Note the increase in the uncertainty as
the counting timeT increases, and the slight dip in the simulation outcome nearT = 0.1.

Figure 12.1 presents the corresponding simulation results. The solid curves corre-
spond to values calculated from these individualÂ(T ) estimates: mean (center solid
curve) and mean± one standard deviation (upper and lower solid curves).

The dashed curves in Fig. 12.1 display theoretical results. Equations (5.44)
and (5.45) yieldTA

.= 1.8939; the dashed curve at the center corresponds to the
representation provided in Eq. (12.2). Results established in Sec. 12.3.8, our more
thorough study of estimation via the normalized Haar-wavelet variance, provide the
upper and lower dashed curves, which represent theoretical values for the mean±
one standard deviation [see Eq. (12.25)].

As with all finite data sets, increasing the counting timeT yields fewer members of
the sequence of counts,{Zk(T )}, which, in turn, leads to increased variability in the
estimated normalized Haar-wavelet variance,Â(T ). This results in a wider separation
between the mean± one standard deviation curves in Fig. 12.1 for larger values of
the counting timeT . For this reason, employing values of̂A(T ) nearT = L has
dubious value; we typically set an upper limitT ≤ Tmax ≡ L/10 for all count-based
statistics.
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Time Range α̂A from Â(T ) α̂A−1 from Â(T )− 1
Tmin Tmax Bias SD RMSE Bias SD RMSE

100 101 −0.321 0.019 0.321 0.007 0.028 0.029
100 102 −0.193 0.020 0.194 0.001 0.023 0.023
100 103 −0.128 0.039 0.134 −0.009 0.039 0.040
101 102 −0.082 0.052 0.097 0.000 0.056 0.056
101 103 −0.061 0.077 0.098 −0.018 0.078 0.080
102 103 −0.060 0.197 0.206 −0.046 0.199 0.204

Table 12.1 Performance of fractal-exponent estimatesα̂ for 100 different simulations of
a fractal-Gaussian-process-driven Poisson process, obtained via estimates of the normalized
Haar-wavelet variancêA(T ). We chose the counting times to increase geometrically by factors
of 100.1, thereby providing 10 counting times per decade of the overall counting-time range
used to obtain the estimate; the first two columns lists this range. The next three columns
represent the bias, standard deviation (SD), and resulting root-mean-square error (RMSE) for
calculations carried out on the logarithm of the estimated normalized Haar-wavelet variance
Â(T ); the final three columns display the same calculations carried out onÂ(T ) − 1. Best
results (least root-mean-square error) obtain by using the counting-time range101 ≤ T ≤ 102

for Â(T ), and by using100 ≤ T ≤ 102 for Â(T )− 1.

Apart from statistical deviations about the mean, the mean value itself also devi-
ates from ideal fractal behavior, as a result of the method for constructing the fractal
Gaussian process used in the simulation. As indicated above, we employ a discrete-
time approximation; this leads to a generated process that remains fixed for periods
of 2L/M , or approximately 0.160 time units, bearing in mind thatL differs among
the simulations. For counting timesT significantly less than2L/M , the rate rarely
changes between countsZk(T ) in adjacent counting windows. This leads to results
that differ little from those of a homogeneous Poisson process, and provides an ex-
planation for why the simulation (solid curve) lies closer to unity than the simple
theoretical result (dashed curve) for small counting timesT (this slight difference
appears in many other measures presented in this chapter as well). Hence, for this
process with small counting times,A(T ) ≈ 1 provides a somewhat better approxi-
mation than does Eq. (12.2). We can obtain further improvement by making use of an
empirical fit that more precisely accommodates the piecewise-constant construction
of the fractal Gaussian process, namely

A(T ) = 1 +
(T/TA)α

1 + (T/T1)−2 , (12.3)

with T1
.= 0.124. Equation (12.3) follows the simulation results almost perfectly (not

shown).
The deviations from ideal scaling behavior displayed in graphical form in Fig. 12.1

directly carry over to estimateŝα of the fractal exponent. We examined the statistics
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FRACTAL PARAMETER ESTIMATION 279

of the fractal exponents estimated from individual simulations, rather than from the
aggregate results shown in Fig. 12.1. Specifically, for each simulation we calculated
the logarithms of the estimated normalized Haar-wavelet varianceÂ(T ) and of the
counting timeT , obtained the least-squares best fit of a straight line to this curve
over a specified range of counting timesT , and called the resulting slopêα. (Fitting
the logarithms of the values to a linear function turns out to be superior to fitting the
original values to a power-law function; see Sec. 12.3.8.)

We then determined the statistics ofα̂ over the 100 simulations, namely its sample
bias

Ê[α̂− α],

standard deviation (SD)

V̂ar
1/2

[α̂ ],

and root-mean-square error (RMSE)

Ê1/2[(α̂− α)2],

which is equal to the square root of the sum of the squares of the standard deviation
and the bias. We followed this procedure for various ranges of the counting time,
spanning100 through103 in decade steps. Nonfractal properties of the data set, such
as dead time, often heavily influence behavior for counting times substantially smaller
thanTA; for this reason, we do not considerTmin < 1. Finally, we repeated the entire
procedure for the logarithm of[Â(T )− 1], rather than of̂A(T ). Table 12.1 presents
the results of this procedure.

Examination of the third column in Table 12.1 reveals the strong negative bias that
emerges by usinĝA(T ) directly. The form of Eq. (12.2) implies that the slope on a
doubly logarithmic plot will lie significantly belowα, because of the presence of the
unity term; this occurs for all ranges of the counting time, but is most apparent for the
shorter ones. This observation accords with the curved appearance of Fig. 12.1. Were
Â(T ) to follow a pure power-law form, as in Eq. (12.1), Fig. 12.1 would behave as
a straight line. The standard deviation ofα̂ (fourth column) increases with counting
time, in concert with the increase in the standard deviation ofÂ(T ). Taken together,
the bias and standard deviation ofα̂ result in a root-mean-square error that never lies
below 0.09, largely as a result of the bias, which, in turn, arises from the constant
unity term.

Subtracting a constant term of unity yields better estimates for the fractal expo-
nent. The magnitude of the bias decreases markedly, although the bias still proves
significant for the largest and smallest counting times. For the smallest of these, the
departure ofÂ(T ) from the simple form of Eq. (12.2), resulting from the discrete-
time approximation employed for the fractal Gaussian process, gives rise to the slight
dip in the simulation outcome (relative to theory) in Fig. 12.1 nearT = 0.1. This,
in turn, leads to an estimated slopelarger thanα, and therefore an estimated fractal
exponent̂α > α.

Turning to the largest counting times, all bias calculations includingT = 103

exhibit negative values. In all three cases the magnitude of the bias exceeds the
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standard error (standard deviation divided by the square root of the number of trials)
by a factor of two or three, and the bias values appear approximately to follow a
Gaussian distribution, making this difference highly significant. This likely arises
from periodicity effects in the simulated fractal Gaussian process array; the circular
nature of the original array of sizeM reduces the variance below the value that would
obtain for a true (nonperiodic) fractal Gaussian process. While eliminating half of the
array reduces this effect, it nevertheless remains statistically significant, particularly
for longer times.3 This deviation also appears at the right-most edge of Fig. 12.1,
where the simulated mean̂A(T ) curve lies slightly below its theoretical value.

Intermediate counting times yield excellent bias values, which are quite small for
100 ≤ T ≤ 102; this range of counting times yields the best overall performance
as well, with a root-mean-square error of only 0.023. Finally, we note that the bias
values, while significantly different from zero, do not significantly affect the root-
mean-square error values; they cause an increase of less than four percent of the
value that would obtain from the standard deviation alone.

Using the functional form provided in Eq. (12.3) to model the results in Fig. 12.1
would provide still better estimateŝα. However, as indicated in Sec. 12.2.1, this
violates the spirit of analyzing an unknown process. Indeed, subtracting unity from
the estimated normalized Haar-wavelet variance is truly acceptable only if we know
that the process approximately follows the form of Eq. (12.2). In fact, replacing the
Poisson kernel with an integrate-and-reset process yields an estimated normalized
Haar-wavelet variance that more closely follows Eq. (12.1) for intermediate counting
times. Subtracting unity from such values ofÂ(T ) would then lead to apositivebias
in the estimatêα, and would likely even lead to negative values forÂ(T ) − 1 over
some range of counting times. Certainly, progressively more complex models for
Â(T ) yield progressively better estimatesα̂ when extensivea priori knowledge of
the process exists [see Bardet, Lang, Moulines & Soulier (2000) and Bardet et al.
(2003) for a sophisticated treatment]. However, these models become progressively
less tenable in the absence of such knowledge. In this chapter we make use of both
Eqs. (12.1) and (12.2) in estimating the fractal exponent.

We conclude this section by noting that other simulation methods can provide
results that follow Eq. (12.2) even more closely. In later sections of this chapter,
where we evaluate the performance of various estimation approaches, it turns out
that the slight difference between simulated and ideal behavior does not affect the
performance measures significantly more (or less) than it does for the normalized
Haar-wavelet variance examined here. These differences give rise to estimated fractal
exponents with expected values that differ from the nominal value of 0.8. This leads
to a small apparent bias, but as shown in the right-most three columns of Table 12.1,

3 A further systematic source of error derives from the fact that the expectation of the logarithm differs from
the logarithm of the expectation. This difference, which arises in all exponent estimates based on doubly
logarithmic plots, can prove important when statistics become sparse, such as at the longest counting times
for Â(T ). In this particular case, explicit forms are available for bias correction (Veitch & Abry, 1999).
However, these forms are valid only for Gaussian-distributed counts, and the calculated values overestimate
the bias by a factor of three for our simulations.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



PERFORMANCE OF VARIOUS MEASURES 281

we may generally neglect the effects of the bias, and therefore the effects of non-ideal
fractal behavior, for the purposes of evaluating various point-process measures.

Furthermore, the results developed in this section illustrate some of the issues
involved in analyzing non-ideal point processes. The simulation approach presented
here is therefore instructive since most real data sets depart from ideal fractal behavior
to some extent.

We now proceed to use the same simulated data to evaluate the performance of
various other measures.

12.3 PERFORMANCE OF VARIOUS MEASURES

12.3.1 Limitations of measures not based on counts

Of the collection of measures presented in Chapter 3, some prove more useful than
others for estimating the parameters of fractal behavior such as fractal exponents and
onset times or frequencies. As suggested in Sec. 5.5.1, we can cast aside interval-based
measures from consideration when analyzing a general fractal-based point process.
These measures generally prove less useful than count-based and point-process-based
measures because they reliably reveal fractal behavior only in special cases.

To establish this, we examine the results of applying interval-based measures to
two specific fractal-based point processes, and demonstrate that all such measures
fail with one process or the other.

First we consider a fractal renewal process (Chapter 7). As a member of the re-
newal point-process family, the interevent intervals are independent so that all of the
measures set forth in Secs. 3.3.2–3.3.6 return simple, nonfractal forms. These mea-
sures thuscannotdistinguish between a fractal renewal process and a nonfractal one
such as the homogeneous Poisson process. Figure 5.4b) illustrates the indistinguisha-
bility of the rescaled range statistic for these two processes. The interevent interval
density (or distribution) set forth in Sec. 3.3.1 forms the sole exception. Since it
readily reveals fractal behavior in fractal renewal processes itcandistinguish the two
forms.

As the second example, we consider a doubly stochastic Poisson process driven by
a fractal Gaussian process (Sec. 6.3.3) whose rate has a low coefficient of variation,
Cµ ¿ 1. In this case, all of the measures set forth in Secs. 3.3.2–3.3.6can serve
to discriminate between this process and a homogeneous Poisson process. However,
the interevent-interval density and distributioncannotdistinguish between them; al-
though the interval ordering differs, quite similar interval densities characterize the
two processes [see Eqs. (4.33) and (4.3)]. Figure 5.5a) illustrates the indistinguisha-
bility of the interval densities for these two processes.

We conclude that the statistics in Secs. 3.3.2–3.3.6 fail for the former process
whereas those in Sec. 3.3.1 fail for the latter, so that no interevent-interval statistic
proves useful in all cases. Even in cases where dependencies among intervals do
exist, the measures in Secs. 3.3.2–3.3.6 can suffer from problems of interpretation
since these measures describe the point process in terms of a time axis that is warped
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with respect to real time, as shown in Fig. 3.1e). In particular, the interval-based auto-
correlation and spectrum reliably describe fractal behavior only when the coefficient
of variation of the intervals is small (DeBoer et al., 1984; Turcott & Teich, 1996).

Nevertheless, some interval-based measures can be useful for analyzing point
processes whose fractal characteristics derive only from the relative ordering of the
interevent intervals, and not from their distribution. This holds for the general dou-
bly stochastic Poisson process, results for which we report throughout this chapter.
We therefore include four often-used interval-based measures within our purview:
rescaled range analysis (Sec. 3.3.5), detrended fluctuation analysis (Sec. 3.3.6), the
interval-based wavelet variance (Sec. 3.3.4), and the interval-based spectrum (peri-
odogram) (Sec. 3.3.3). We continue to bear in mind, however, that these measures do
not always yield reliable results for general fractal-based point processes.

The point-process-based measures presented in Sec. 3.5 also prove impractical
in the general case. Generalized dimensions for fractal-rate point processes assume
integer (nonfractal) values, as discussed in Sec. 3.5.4, whereas the remaining measures
set forth in Sec. 3.5 all have count-based analogs (some with superior statistics) that
prove far easier to calculate. For example, estimates of the coincidence rateG(t)
based on a finite-length data set containingN points compriseN(N − 1)/2 Dirac
delta functions representing the delay times that happened to occur in that particular
data set, and anotherN delta functions at zero delay time. Increasing the number of
points in the data set yields a greater number of delta functions, but does not cause
the coincidence-rate estimate to converge to a smooth form. One solution is to bin
the events. Rather than using the point processdN(t) to generate the coincidence
rateG(t), this procedure effectively makes use of the counting process{Zk(T )} to
construct an autocorrelationRZ(k, T ), which yields smooth results for finite data
sets. Indeed, Eq. (3.54) illustrates how the autocorrelation derives from a smoothed
version of the coincidence rate (see Prob. 12.4).

We are left with four count-based measures whose merit we wish to assess for
the estimation problem at hand: the normalized variance, normalized Haar-wavelet
variance, autocorrelation, and rate spectrum. In addition we study the performance
of the four interval-based measures indicated immediately above. We proceed to
examine these in turn.

12.3.2 Normalized variance

As mentioned in Sec. 3.4.2, the normalized variance suffers from bias and thus proves
problematical as a measure. To explicitly demonstrate this, we begin with the estimate
of the count-sequence variance,

V̂ar[Z(T )] = (M − 1)−1
M−1∑
n=0

{
Zn(T )− Ê[Z(T )]

}2

= (M − 1)−1
M−1∑
n=0

{
Zn(T )−M−1

M−1∑
m=0

Zm(T )

}2
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= (M − 1)−1
M−1∑
n=0

Z 2
n(T )

−M−1 (M − 1)−1
M−1∑
m=0

M−1∑
n=0

Zm(T ) Zn(T )

= M−1
M−1∑
n=0

Z 2
n(T )

−M−1 (M − 1)−1
M−1∑
m=0

M−1∑

n 6=m

Zm(T )Zn(T ), (12.4)

whereM = int(L/T ) represents the number of counts andint(x) is the largest
integer not exceedingx.

The count-sequence variance has an expected value given by

E
{
V̂ar[Z(T )]

}

= M−1
M−1∑
n=0

E
[
Z2

n(T )
]

−M−1 (M − 1)−1
M−1∑
m=0

M−1∑

n6=m

E[Zn(T )Zm(T )] (12.5)

= E[Z2(T )]− 2
M∑

k=1

(M − k)RZ(k, T )
M(M − 1)

.

To evaluate this expression, we make use of Eqs. (5.13) (fork = 0), (5.14), and
(5.45), which yield

E
{
V̂ar[Z(T )]

}

= E2[Z(T )] + E[Z(T )] + E[Z(T )] (T/TF )α

−
M∑

k=1

2(M − k)
M(M − 1)

{
E2[Z(T )] + E[Z(T )]

+ 1
2E[Z(T )] (T/TF )α

[
(k + 1)α+1 + (k − 1)α+1 − 2kα+1

] }

= E[Z(T )] (T/TF )α

×
{

1−
M∑

k=1

(M − k)
M(M − 1)

[
(k + 1)α+1 + (k − 1)α+1 − 2kα+1

]
}

≈ E[Z(T )] (T/TF )α

×
{

1−
∫ M

x=1

(M − x)
M(M − 1)

[
(x + 1)α+1 + (x− 1)α+1 − 2xα+1

]
dx

}
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≈ E[Z(T )] (T/TF )α

×
{

1−
∫ M

x=0

(M − x)
M2

[
α(α + 1)xα−1

]
dx

}

= E[Z(T )] (T/TF )α
[
1−Mα−1

]

= E[Z(T )] (T/TF )α
[
1− (T/L)1−α

]
. (12.6)

The bias in Eq. (12.6) carries over to the estimate of the normalized varianceF̂ (T )
as a similar bias. The result is a spuriously low fractal-exponent estimateα̂. This
appears in the simulation results presented in Fig. 12.2 and Table 12.2, which illustrate
the substantial departure of this statistic from preciseTα behavior.

Moreover, as indicated in Sec. 5.2.3, the normalized variance cannot rise faster
thanT 1. As a result of the inherent bias in its estimate, and its inability to reveal fractal
exponents greater than unity, we do not recommend use of the normalized variance
F̂ (T ). The normalized Haar-wavelet variancêA(T ) is a far superior statistic, as
comparison of Fig. 12.2 with 12.1, and Table 12.2 with 12.1, affirms.

1 + (T=TF )�SIMULATIONNORMALIZED VARIANCE

COUNTING TIME TESTIMATED
NVb F(T)

10310210110010�110�2
102101100

Fig. 12.2 Estimated normalized variancêF (T ) vs. counting timeT , based on the same
simulations as those used to generate Fig. 12.1 (a fractal-Gaussian-process-driven Poisson
process). We present the mean value (solid curve) along with the simple theoretical form
provided in Eq. (5.44b) (dashed). The simulation results deviate from this ideal fractal behavior,
especially for long counting timesT , illustrating the substantial bias inherent in the normalized
variance statistic.
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Time Range α̂F from F̂ (T ) α̂F−1 from F̂ (T )− 1
Tmin Tmax Bias SD RMSE Bias SD RMSE

100 101 −0.191 0.022 0.192 −0.051 0.018 0.054
100 102 −0.151 0.028 0.153 −0.073 0.026 0.077
100 103 −0.159 0.050 0.167 −0.112 0.048 0.122
101 102 −0.126 0.039 0.132 −0.096 0.037 0.103
101 103 −0.167 0.074 0.183 −0.151 0.074 0.168
102 103 −0.221 0.141 0.262 −0.216 0.141 0.258

Table 12.2 Performance of fractal-exponent estimatesα̂ obtained via estimates of the nor-
malized variancêF (T ). See Table 12.1 for details. Best results (least root-mean-square error)
obtain by using101 ≤ T ≤ 102 for F̂ (T ), and by using100 ≤ T ≤ 101 for F̂ (T ) − 1.
We find thatα̂ < α in all cases; the deviation increases with increasing values ofT . Bias is
problematic for this estimator. For all ranges of counting time, the normalized Haar-wavelet
varianceÂ(T ) returns significantly better results.

12.3.3 Count autocorrelation

The autocorrelationRZ(k, T ) of the counting sequence{Zk(T )}, as a function of the
delayk, forms a windowed version of the coincidence rateG(t), as demonstrated by
Eq. (3.54). Like the coincidence rate, the limit for large delays dominates the fractal
portion for all but the smallest delays. Rearranging Eq. (5.44d) yields

RZ(k, T )/E[Z(T )] = E[Z(T )] + (T/TR)α kα−1. (12.7)

Sinceα < 1 (a condition that is required for this measure to demonstrate any fractal
behavior), the last term decreases with increasingk, making estimates of its form
difficult for all but small values ofk.

We therefore use instead the autocovariance (autocorrelation minus the square of
the mean), which eliminates the dominant constant term. Unlike other measures
considered in this chapter, the count-based autocorrelation (or autocovariance) takes
two arguments; analyses as a function of delay numberk require a counting time
T as a parameter. Choosing a long counting time leads to loss of information at
shorter time scales. In contrast, small counting times lead to excessive noisiness in
the resulting computed autocovariance and, as mentioned earlier, nonfractal behavior
often dominates for these small times. We chooseT = 1 as a compromise for this
simulation, which proves close to optimal.

Figure 12.3 and Table 12.3 present the simulation results for the normalized auto-
covariance, that is, the autocorrelation minus the square of the mean, normalized by
the variance, as a function of the delay numberk:

R2(k) ≡ RZ(k, T )− E2[Z(T )]
Var[Z(T )]

. (12.8)
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Unlike the presentations in Tables 12.1 and 12.2, we present only one set of columns
here; we must subtract the square-mean number of counts or essentially constant
behavior results. This estimator performs poorly in comparison with the normalized
Haar-wavelet variancêA(T ); it is inferior even to the normalized variancêF (T ).

Since the autocovariance has two arguments, one can consider this quantity as
a function of the counting timeT with a fixed delay numberk. Examination of
Eqs. (5.44d) and (12.7) indeed reveals aTα dependency. However, rearrangement of
these equations yields a diminished (and therefore relatively more noisy) version of
the normalized variance:

RZ(k, T )/E[Z(T )]− E[Z(T )] = (T/TR)α kα−1

= [F (T )− 1] (TF /TR)α kα−1

= 1
2α(α + 1) kα−1 [F (T )− 1]. (12.9)

� k��1SIMULATION
NORMALIZED AUTOCOVARIANCE

DELAY NUMBER kESTIMATED
NAb R 2(k)

103102101100

100
10�1
10�2

Fig. 12.3 Plot of R̂2(k) = {R̂Z(k, T ) − Ê2[Z(T )]}
/
V̂ar[Z(T )] vs. number of intervals

k, the estimated normalized autocovariance, based on the same simulations as those used to
generate Figs. 12.1 and 12.2 (a fractal-Gaussian-process-driven Poisson process). We obtained
values of the autocovariance and variance for each simulation run, and then averaged the ratio of
these two quantities (solid curve). This normalization provides results in the spirit of Figs. 12.1
and 12.2. We choseT = 1 for this simulation. A simple theoretical form proportional to
kα−1, following Eq. (5.44d), also appears (dashed curve). The large disagreement between
the simulation results and the theoretical behavior, especially at large delaysk, illustrates the
bias inherent in the count-based autocovariance.
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DelayRange α̂R2 from {R̂Z(k, T )− Ê2[Z(T )]}/V̂ar[Z(T )]
kmin kmax Bias SD RMSE

100 101 −0.097 0.034 0.103
100 102 −0.139 0.058 0.150
100 103 −0.259 0.106 0.280
101 102 −0.185 0.100 0.211
101 103 −0.360 0.163 0.395
102 103 −0.611 0.417 0.739

Table 12.3 Performance of fractal-exponent estimatesα̂ obtained via estimates of the count-
based autocovariance,R̂Z(k, T )−Ê2[Z(T )], for different ranges of the delayk. See Table 12.1
for details. Best results (least root-mean-square error) obtain for the shortest delay ranges;
however, the bias is excessive for all delays and the standard deviation is large for all but
the shortest delays. Results returned by the normalized varianceF̂ (T ) are better, and those
returned by the normalized Haar-wavelet varianceÂ(T ) are uniformly superior. This estimator
does not appear to be useful.

Equation (12.9) evidently suffers from all of the deficiencies of the normalized vari-
anceF (T ); moreover, it is afflicted by a multiplicative factorkα−1, always less than
unity, that decreases the useful term while leaving the constant, nonvarying terms
unchanged.

We conclude that the autocorrelation̂RZ(k, T ) is deficient as a statistic when
considered as a function either of the delayk or the counting timeT . We do not
recommend its use.

12.3.4 Rescaled range

The rescaled rangeU(k) of the interevent-interval sequence{τk}, as a function of
the delayk, yields information about dependencies among the intervals. Although
it fails to reveal fractal behavior in the fractal renewal process (see Sec. 12.3.1), and
presents information on a warped time axis, it enjoys substantial use as a measure of
fractal activity and is therefore worth examining. Hurst introduced this measure in
1951, as discussed in Sec. 3.3.5. The rescaled range varies as

√
k for independent

intervals and, more generally askH , whereH = (1+α)/2, for a fractal process with
fractal exponentα (see Sec. 6.3.1).

To facilitate the comparison of this measure with others, we examine the statistics
of

U2(k) ≡ U2(k)/k . (12.10)
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1 + (k=kU )�SIMULATIONNORMALIZED RESCALED RANGE

NUMBER OF INTERVALS kESTIMATED
NRSb U 2(k)

105104103102101

102
101
100

Fig. 12.4 Normalized estimated rescaled rangeÛ2(k) ≡ Û2(k)/k, as a function of the
number of intervalsk, based on the same simulations as those used to generate Figs. 12.1–12.3
(a fractal-Gaussian-process-driven Poisson process). Results begin atk = 4, and increase by
a factor of2 per displayed point thereafter. We obtained values of the R/S statistic for each
simulation run, normalized them so that they came close to unity for independent intervals
[converted tôU2(k)], and then averaged all 100 runs together (solid curve). A theoretical form
akin to those shown in Figs. 12.1–12.3 also appears (dashed curve), employingkU = 671.3,
which minimizes the sum of squares of the differences in the logarithms. A simpler form,
proportional tokα, provides an even worse fit to the data (not shown). The deviation of the
simulation results from these curves, even for large interval numbersk, illustrates the large
bias inherent in the rescaled range statistics.

For a fractal-based point process,U2(k) varies askα, much like the normalized Haar-
wavelet varianceA(T )which varies asTα. In the context of the simulations employed
in this chapter, for small values ofk the underlying fractal rate changes little so that
the intervals are relatively independent in these local neighborhoods. We therefore
expect thatU(k) ∼

√
k so thatU2(k) ∼ k0 for smallk. On the other hand, large

values ofk should encompass significant fractal fluctuations, so thatU(k) ∼ kH and
U2(k) ∼ kα.

We expect the value ofk where these two behaviors meet (the onset value) to be of
the order of the fractal onset times for the normalized variance and normalized Haar-
wavelet variance (about 1 time unit), multiplied by the average rate (100 per time
unit); the onset should therefore occur at aboutk = 100. Figure 12.4 and Table 12.4
present simulation results for the normalized estimated rescaled rangeÛ2(k). The
averaged results presented in Fig. 12.4 follow the theoretical power-law formkα
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Time Range α̂U2 from Û2(k)/k α̂U2−1 from Û2(k)/k − 1
kmin kmax Bias SD RMSE Bias SD RMSE

102 103 −0.537 0.008 0.537 −0.194 0.016 0.195
102 104 −0.386 0.010 0.386 −0.154 0.012 0.155
102 105 −0.282 0.015 0.282 −0.116 0.015 0.117
103 104 −0.265 0.022 0.266 −0.112 0.025 0.114
103 105 −0.175 0.026 0.177 −0.077 0.027 0.082
104 105 −0.069 0.101 0.122 −0.033 0.105 0.110

Table 12.4 Performance of fractal-exponent estimatesα̂ obtained via normalized estimates
of the rescaled range (R/S),̂U2(k) ≡ Û2(k)/k, as a function of the number of intervals
k. See Table 12.1 for details. Best results (least root-mean-square error) obtain by using
104 ≤ k ≤ 105 for Û2(k), and by using103 ≤ k ≤ 105 for Û2(k)− 1. Results obtained by
usingÂ(T ), the normalized Haar-wavelet variance, are uniformly superior to those based on
the normalized rescaled range. This estimator does not appear to be useful.

only approximately, seriously diverging from it for smaller values ofk; the function
1+(k/kU )α with kU ≈ 671.3 provides a better fit tôU2(k) but still differs consider-
ably from it. EmployingÛ2(k) instead ofÛ(k) permits us to subtract the short-delay
asymptote (which is approximately unity), but doing so improves the performance
only marginally inasmuch as the asymptote bears only a slight likeness to the sim-
ulation. Overall, the normalized Haar-wavelet varianceÂ(T ) proves substantially
superior to the rescaled range for estimating the fractal exponentα̂.

12.3.5 Detrended fluctuation analysis

The detrended fluctuationY (k) of the interevent-interval sequence{τk}, as a function
of the delayk, yields information about dependencies among the intervals related to
those provided by the rescaled rangeU(k). Like the rescaled range, it fails to reveal
fractal behavior in the fractal renewal process (see Sec. 12.3.1) but we nevertheless
investigate its performance. Taqqu & Teverovsky (1998) have pointed out that this
measure exhibits significant bias and variance, except for the special case of Gaussian-
distributed sequences.

The detrended fluctuation resembles the rescaled range in thatY (k) typically
varies askH , whereH = (1 + α)/2 for a process with fractal exponentα. Using
Eq. (3.25) to proceed along lines similar to those followed in Sec. 12.3.4, we define
a normalized version of this measure:

Y2(k2) ≡ 15 Y 2(k + 2)
(k + 2) Var[τ ]

. (12.11)
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1 + (k2=kY )�SIMULATIONNORMALIZED DETRENDED FLUCTUATION

OFFSET NUMBER OF INTERVALS k2ESTIMATED
NDFb Y 2(k 2)

105104103102101
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Fig. 12.5 Normalized estimated detrended fluctuation shown in Eq. (12.11), as a function
of the offset number of intervalsk2, based on the same simulations as those used to generate
Figs. 12.1–12.4 (a fractal-Gaussian-process-driven Poisson process). We definek2 ≡ k + 2,
the offset delay number. Results begin withk2 = 5 (k = 3), and increase by factors of100.1

thereafter (excluding multiple copies of identical values ofk2). We obtained values of the
detrended fluctuation statistic for each simulation run, normalized them to yield values equal
to unity for independent intervals as specified in Eq. (12.11), and then averaged all 100 runs
together (solid curve). The simple form provided in Eq. (12.12) fits the simulated data very
well (dashed curve).

We present the simulation results for the normalized estimated detrended fluctuation
Ŷ2(k) in Fig. 12.5 and Table 12.5. Overall, we expect this measure to vary as

Y2(k2) ≈ 1 + (k2/kY )α. (12.12)

Equation (12.12) does indeed fit the simulations presented in Fig. 12.5 very well,
with only one free parameter,kY , chosen to minimize the sum of squares of the
differences in the logarithms. This takes a value ofkY = 684.6, which is within an
order of magnitude of our original estimate in Sec. 12.3.4.4

4 Although Eq. (12.11) reduces toY2(k2) = 1−4/k2
2 , given Eq. (3.25), for our simulations it nevertheless

yields results that closely approach those of Eq. (12.12). We therefore employ it rather than a simpler form
without the+2 offset. The origin of the offset may lie in the warping involved in translating the process
from time in seconds to dimensionless interval number, which, in turn, may affect the representations of
the relevant correlations. A number ofad hocmethods have been devised to address this issue (see, for
example, Buldyrev et al., 1995), but they do not provide as good a fit to our simulations.
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Time Range α̂Y 2 from Ŷ2(k2) α̂Y 2−1 from Ŷ2(k2)− 1
k2min k2max Bias SD RMSE Bias SD RMSE

102 103 −0.490 0.011 0.490 0.123 0.025 0.125
102 104 −0.336 0.013 0.337 0.046 0.017 0.049
102 105 −0.225 0.019 0.226 0.020 0.020 0.028
103 104 −0.189 0.027 0.191 −0.001 0.031 0.031
103 105 −0.111 0.034 0.116 −0.007 0.035 0.036
104 105 −0.052 0.087 0.101 −0.014 0.089 0.091

Table 12.5 Performance of fractal-exponent estimatesα̂ obtained using normalized esti-
mates of the detrended fluctuation as defined in Eq. (12.11), as a function of offset delay
numberk2 ≡ k + 2. See Table 12.1 for details. Best results (least root-mean-square error)
obtain by using104 ≤ k2 ≤ 105 for Ŷ2(k2), and by using102 ≤ k2 ≤ 105 for Ŷ2(k2)− 1.
This measure yields errors nearly as small as those returned by the normalized Haar-wavelet
varianceÂ(T ); it is substantially superior to the rescaled range statistic examined in Fig. 12.4
and Table 12.4.

Employing Ŷ2(k2) instead ofŶ (k) again permits the short-delay asymptote of
about unity to be subtracted, and in this case the excellent fit of Eq. (12.12) to the
simulated data imparts substantial improvement with this procedure. Detrended fluc-
tuation analysis thus yields results only slightly inferior to those provided by the
normalized Haar-wavelet variancêA(T ) for the point process under study.

12.3.6 Interval wavelet variance

The wavelet varianceVar[Wψ,τ (k, l)] of the interevent-interval sequence{τk} as a
function of the delayk, as set forth in Sec. 3.3.4, provides another window on the
second-order properties of this sequence. Although different in construction from
the rescaled rangeU(k) and detrended fluctuationY (k), it nevertheless has much
in common with these two measures. As before, we consider the merits of this
measure, bearing in mind the same cautions regarding its inability to discriminate
fractal renewal processes from nonfractal point processes (see Sec. 12.3.1). We
choose the Haar wavelet to simplify processing and to minimize the variance of the
resulting estimate (see Sec. 5.2).

Unlike rescaled range and detrended fluctuation analysis, the wavelet variance
Var[Wψ,τ (k, l)] typically varies askα rather than askH for a process with fractal
exponentα. Hence, we need only divide by the variance of interevent intervals to
render this quantity dimensionless, as provided in Eq. (3.21):

Aτ (k) ≡ Var[Wψ,τ (k, l)]
Var[τ ]

. (12.13)
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Fig. 12.6 Normalized estimated interval-based wavelet varianceÂτ (k)shown in Eq. (12.13),
as a function of wavelet scale (number of intervals)k, based on the same simulations as those
used to generate Figs. 12.1–12.5 (a fractal-Gaussian-process-driven Poisson process). Results
begin withk = 2, and increase by factors of2 thereafter. We obtained values of the wavelet
variance statistic for each simulation run, normalized them to yield values equal to unity for
independent intervals as specified in Eq. (12.13), and then averaged all 100 runs together (solid
curve). The simple theoretical form shown in Eq. (12.14) fits the simulated data very well
(dashed curve). The increased difference between the two curves for the largest numbers of
intervals derives from the stochastic fluctuations in the simulations themselves. Changing only
the random seeds used in the simulations, but leaving all other parameters intact, yields an
averaged̂Aτ (k) that exhibits different fluctuations, albeit of similar magnitude (not shown).

We again assume that the warping required to transform time in seconds to dimension-
less interval number only marginally affects the results. As a parallel to Eq. (12.12),
we expect the normalized interval-based wavelet variance to follow the form

Aτ (k) ≈ 1 + (k/kA)α. (12.14)

Equation (12.14) indeed provides an excellent fit to the simulated data, as shown
in Fig. 12.6, by choosing the one free parameter to bekA

.= 389.2. This value
minimizes the sum of squares of the differences in the logarithms. Again, the param-
eterkA lies within an order of magnitude of our original estimate in Sec. 12.3.4.
As with the rescaled range and detrended fluctuation, usingÂτ (k), rather than
V̂ar[Wψ,τ (k, l)], permits us to subtract the short-delay asymptote near unity. As
with Y2(k2), Eq. (12.14) fits the simulated data extremely well and offers a con-
siderable decrease in the estimation error; the results are only slightly inferior to
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Time Range α̂Aτ from Âτ (k) α̂Aτ−1 from Âτ (k)− 1
kmin kmax Bias SD RMSE Bias SD RMSE

102 103 −0.454 0.024 0.454 0.057 0.055 0.079
102 104 −0.269 0.020 0.270 0.016 0.025 0.030
102 105 −0.179 0.029 0.182 0.008 0.029 0.030
103 104 −0.147 0.059 0.158 −0.005 0.067 0.067
103 105 −0.083 0.054 0.099 −0.001 0.056 0.056
104 105 0.029 0.298 0.299 0.054 0.306 0.311

Table 12.6 Performance of fractal-exponent estimatesα̂ obtained via normalized estimates
of the interval-based wavelet variance as defined in Eq. (12.13), as a function of wavelet scale
k. See Table 12.1 for details. Best results (least root-mean-square error) obtain by using
103 ≤ k ≤ 105 for Âτ (k), and by using102 ≤ k ≤ 104 or 105 for Âτ (k)− 1. This measure
yields errors comparable to those generated by normalized detrended fluctuation analysis, and
nearly as small as those returned by the normalized Haar-wavelet variance.

those provided by the normalized Haar-wavelet varianceÂ(T ) (compare Tables 12.6
and 12.1). For the Poisson-based process at hand, multiplying the abscissa by half
the average interevent time5 yields a plot that is nearly coincident with that of the
normalized Haar-wavelet variancêA(T ). In particular, we obtain a more precise
value for the fractal onset number:

kA =
TA

E[τ ]/2
.= 1.8939/0.005 = 378.78, (12.15)

which is in excellent accord with the rough estimate ofkA
.= 389.2 obtained empiri-

cally.
Agreement of this kind between̂A(T ) and Âτ (k) does not emerge in general,

however. Consider, for example, a point process whose interval standard deviation
lies well below the interval mean. For small numbers of intervalsk, the interval-based
wavelet varianceAτ (k) can assume arbitrarily small values, as a result of the small
relative standard deviation of the intervals. However,A(T ) must approach an asymp-
tote of unity for small values ofT , so it can diverge significantly fromAτ (2T/E[τ ]).
The human-heartbeat point process provides a case in point; examination of Figs. 5.2
and 5.8 reveals precisely this difference. The underlying reason for this disparity lies
in the integrate-and-reset kernel associated with useful models for the heartbeat pro-
cess. Poisson kernels, in contrast, yield plots ofÂ(T ) andÂτ (k) that nearly coincide,
as shown in the simulations presented here.

5 The factor of a half arises from the definition of the count-based normalized Haar-wavelet varianceA(T ),
for whichT encompasses half the duration of the Haar wavelet [see Eq. (3.40)].
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12.3.7 Interval spectrum

The interval-based spectral estimate (periodogram)Ŝτ (f) forms the last interval-
based measure we consider. As with other such measures, we note its most serious
limitation, its inability to discriminate fractal renewal processes from nonfractal point
processes (see Sec. 12.3.1).

Like the wavelet varianceVar[Wψ,τ (k, l)], but unlike the rescaled range and de-
trended fluctuation, the interval-based periodogram typically varies as1/fα rather
than as1/fH for a process with fractal exponentα. Normalizing byVar[τ ], the es-
timated high-frequency asymptote as discussed in Sec. 3.3.3, yields a dimensionless
form that achieves a value of unity for large interval frequenciesf. We again assume
that the warping required to transform time in seconds to dimensionless interval num-
ber only marginally affects the results. In another parallel to Eq. (12.12), we expect

1 + (f=fS)��SIMULATIONPERIODOGRAM

INTERVAL FREQUENCY fEST.INTERV
ALSPECTRU
Mb S �(f)=d Var[�
℄

10�110�210�310�410�510�6
102101100

Fig. 12.7 Normalized estimated interval-based spectrum (periodogram)Sτ (f)/V̂ar[τ ] vs.
interval frequencyf, based on the same simulations as those used to generate Figs. 12.1–12.6 (a
fractal-Gaussian-process-driven Poisson process). For each simulation, we calculated the (fast)
Fourier transform of the data, using all220 intervals in a single transform without windowing.
Next, we took the square of the magnitude, and divided by the sample variance of the intervals
of that simulation. We then collected values into blocks whose frequencies differed by less
than a factor of 1.02, and plotted a single point comprising the mean of the frequencies and the
mean of the spectral estimate. Finally, we averaged all 100 curves together. This appears as
the solid curve. Equation (12.16) generates a simple theoretical curve (dashed) which fits the
simulated data very well.
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α̂Sτ−Var[τ ] from

Freq. Range α̂Sτ from Ŝτ (f) Ŝτ (f)− V̂ar[τ ]
fmin fmax Bias SD RMSE Bias SD RMSE

100 101 0.008 0.606 0.606 0.095 0.843 0.848

100 102 −0.032 0.137 0.141 −0.174 0.179 0.250

100 103 −0.168 0.037 0.172 −0.070 0.052 0.087

100 104 −0.436 0.015 0.436 0.309 0.377 0.487

101 102 −0.054 0.227 0.234 −0.230 0.320 0.394

101 103 −0.189 0.040 0.193 −0.059 0.057 0.082

101 104 −0.446 0.015 0.447 0.324 0.389 0.506

102 103 −0.256 0.067 0.264 −0.010 0.089 0.090

102 104 −0.483 0.016 0.483 0.384 0.448 0.589

103 104 −0.562 0.023 0.563 0.644 0.746 0.985

Table 12.7 Performance of fractal-exponent estimatesα̂ for 100 different simulations of a
fractal-Gaussian-process-driven Poisson process obtained from estimates of the interval spec-
trum (periodogram)̂Sτ (f). The simulations were the same as those employed to produce
Table 12.1. We calculated the Fourier transform, and took the square magnitude. The first
two columns specify the range of frequencies employed for calculatingŜτ (f). We express
frequency in terms of its product with the number of retained intervalsN ; thus, the first row
corresponds to the frequency range1/N ≤ f ≤ 10/N . The next three columns represent
the bias, standard deviation (SD), and resulting root-mean-square error (RMSE) for calcula-
tions employing the interval spectrum̂Sτ (f). We next sought to remove the effects of the

high-frequency asymptotêVar[τ ], and re-calculate the fractal exponent. Since the interval
spectrum fluctuates about this asymptote, many of the resulting differences would lie below
zero, making calculation of the logarithm meaningless. We therefore employed averaging and
thresholding. Specifically, we averaged the value ofŜτ (f) at a frequencyf = n/N with the

n/16 values following it in frequency, and then subtracted the estimated asymptoteV̂ar[τ ].
Finally, to avoid the occasional nonpositive number that would still result, we replaced all
numbers less thanεV̂ar[τ ] with εV̂ar[τ ], whereε = 2−12 = 0.000244140625. We estimated
the fractal exponent employing these modified values; these results appear in columns 6–8.
Subtracting the high-frequency asymptote does indeed effectively remove the bias, returning
reduced root-mean-square errors. Best results (least root-mean-square error) obtain by using
100 ≤ N f ≤ 102 for Ŝτ (f), and by using101 ≤ N f ≤ 103 for Ŝτ (f)− V̂ar[τ ].

the normalized interval-based periodogram to follow the form

Sτ (f) ≈ 1 + (f/fS)−α. (12.16)

Figure 12.7 shows that Eq. (12.16) indeed fits the simulated data well, withfS =
0.001893 yielding the least mean-square difference in the logarithms. As with the
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other interval-based measures, usingŜτ (f)/V̂ar[τ ] instead of̂Sτ (f) makes it possible
to subtract unity from the resulting statistic. Since Eq. (12.16) fits the data well, this
operation reduces the bias in the subsequent estimates ofα. The root-mean-square
estimation error indeed improves significantly, although it does not achieve nearly the
results of the normalized Haar-wavelet varianceÂ(T ) (compare Tables 12.7 and 12.1).

The link that we demonstrated betweenA(T ) andAτ (k) also holds between the
interval-based and rate-based periodograms, and for the same reason: the simulations
employ a Poisson kernel. Again, this connection suggests a more accurate estimate
of a fractal onset value, the interval frequency in this case

fS = E[τ ]fS
.= 0.010024× 0.2 = 0.0020048, (12.17)

which agrees well with the value 0.001893 estimated above. We reiterate that the
close link between interval-based and rate-based measures fails to hold in the general
case.

12.3.8 Normalized Haar-wavelet variance

We now consider again, in greater detail, the use of the normalized Haar-wavelet
varianceÂ(T ) for obtaining the fractal exponent̂α. Our preliminary study of the
properties of this statistic appeared in Sec. 12.2.3.

In contrast to the normalized variancêF (T ) and the autocorrelation̂RZ(k, T ),
considered in Secs. 12.3.2 and 12.3.3, respectively, the normalized Haar-wavelet
varianceÂ(T ) has the distinct merit that it is free of bias, as shown in Sec. 12.2.3.6

This statistic offers another important advantage in addition, and that is its wavelet
origin. Values computed at scales that differ by factors of two are nearly independent,
as are values computed for a given counting time but in nonoverlapping counting
windows (Tewfik & Kim, 1992).

One consequence of this wavelet property is that a plot ofÂ(T ) appears noisier than
that ofF̂ (T ) for a given set of data. Figure 12.8 illustrates this, where we graphically
presentÂ(T ) and F̂ (T ) from an individual simulation run. We used averages of
multiple runs such as these to generate Figs. 12.1 and 12.2. Figure 12.8 demonstrates
that, despite its noisier appearance,Â(T ) proves superior tôF (T ) for quantifying
fractal behavior. In particular, it has the distinct merits that its deviations from ideal
fractal behavior have zero mean and are nearly independent. Tables 12.1 and 12.2,
and Figs. 12.1 and 12.2, demonstrate this superiority for our canonical point-process
model.

Although normalized variances employing other wavelet bases have been devel-
oped (Teich et al., 1996; Heneghan et al., 1996), fractal-based point processes rarely
exhibit fractal exponents exceeding two (see Sec. 5.2.2). This, together with the re-
duced effective scaling range of more complex wavelets, usually renders them less

6 As discussed in Sec. 12.2.3, the putative residual bias evident in the sixth column of Table 12.1 is
apparently the result of small deviations from ideal fractal behavior that arise in the simulation itself, and
thatÂ(T )− 1 faithfully reports.
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Fig. 12.8 Estimated normalized Haar-wavelet varianceÂ(T ) (lower solid curve) and esti-
mated normalized variancêF (T ) (upper solid curve) vs. counting timeT . Averaging these
curves with 99 others that are similar yields the results displayed in Figs. 12.1 and 12.2. We
provide mean theoretical results from Eqs. (5.44c) and (5.44b), respectively, for comparison
(dashed curves). The estimate of the normalized Haar-wavelet varianceÂ(T ) exhibits greater
fluctuations than that of the normalized varianceF̂ (T ), yet it exhibits significantly superior
performance.

useful than the Haar wavelet, as discussed in Sec. 5.2.5. Such wavelets do prove
insensitive to linear or higher-order polynomial trends, unlike the Haar. However,
the trends observed in experimental point processes rarely follow exact polynomial
forms, so that this insensitivity does not provide a significant advantage. Finally,
although there is near independence between wavelet transforms at scales that differ
by a factor of two or more, and at different times within the same scale, a small
residual correlation does remain. Wavelets other than the Haar do serve to reduce
this correlation (Tewfik & Kim, 1992), but the concomitant reduced effective scaling
range again typically outweighs any advantage gained by the slight decrease in the
within-scale correlation. In the following, we therefore restrict our attention to the
Haar version of the count-based wavelet variance,A(T ).

We now examine three sampling issues that prove important in obtaining optimal
estimates of the fractal exponentα̂ from Â(T ): (1) counting-time increments; (2)
counting-time weighting; and (3)oversampling. We examine these in turn.

Counting-time increments.We first examine the values ofT that offer the most
accurate estimates of the fractal exponent, when analyzing a fixed-length data set using
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the normalized Haar-wavelet variancêA(T ). Wavelet theory provides a solution.
For a discrete-time sequence, a wavelet transform sampled at scales that increase
by powers of two retains all of the information in the data; an inverse transform of
such a dyadic wavelet transform returns exactly the original sequence. Two caveats
apply in the current circumstances, however. First, computing the variance at a given
scale collapses all of the transform results at that scale into a single number, thereby
eliminating much of the original information. Second, our interest lies in point-
process data rather than in discrete-time sequences; however, the difference between
the two proves unimportant at longer counting times where fractal behavior becomes
significant.

Despite these caveats, optimal sampling turns out not to differ greatly from dyadic
sampling. We investigated this issue by recalculating the results shown in Table 12.1
using various counting-time increments. In particular, we reexamine the root-mean-
square error of̂αobtained fromÂ(T )−1, which made use of factor of100.1 increments
of the counting time, as reported in the right-most column of Table 12.1. Results
appear in the top half of Table 12.8 for four counting-time increments: factors of
100.3, 100.2, 100.1, and100.05. Comparing the entries in these four columns reveals
that close to optimal results obtain with a spacing of100.2 .= 1.584893 while nearly
dyadic spacing (100.3 .= 1.995262 ≈ 2) yields noticeably inferior performance. A
spacing of slightly less than a factor of two appears to yield the best tradeoff between
estimation accuracy and computational load.

Counting-time weighting.The optimal weighting for different counting times
follows from the accuracy of the normalized Haar-wavelet varianceÂ(T ) at a given
value ofT , which we now derive. From the ideal value provided in Eq. (3.40), we
obtain its estimate

Â(T ) =
Ê
{
[Zk(T )− Zk+1(T )]2

}

2Ê[Zk(T )]
=

Ê
[
C2

Haar,N (2T, k)
]

2Ê[λk(T )]
. (12.18)

The statistics ofÂ(T ) prove difficult to analyze since the calculation involves the
division of two random quantities. However, the numerator exhibits far more relative
variation than the denominator, since estimates of second-order quantities such as
autocorrelations and autocovariances generally fluctuate more than estimates of the
mean, a first-order statistic. Moreover, for a given data set, the proportional error in
estimating the denominator remains constant for all counting times, since this error
derives directly from the same estimate of the mean rate regardless of counting time.
After taking the logarithm, this error becomes a constant offset, irrelevant for the
estimation ofα.

We therefore focus on the numerator alone, since replacing the denominator with
its expected value yields the same result:

Â(T ) =
Ê

[
C2

Haar,N (2T, k)
]

2Ê[λk(T )]

≈ Ê
[
C2

Haar,N (2T, k)
]

2E[λk(T )]
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Time Range RMSE of α̂A−1 from Â(T )− 1
Tmin Tmax Weighting 100.3 100.2 100.1 100.05

100 101 Equal 0.033 0.031 0.029 0.028

100 102 0.025 0.022 0.022 0.023

100 103 0.052 0.045 0.040 0.038

101 102 0.080 0.056 0.056 0.056

101 103 0.116 0.088 0.080 0.077

102 103 0.258 0.223 0.203 0.196

100 101 T−1/2 0.033 0.030 0.029 0.028

100 102 0.022 0.019 0.019 0.019

100 103 0.023 0.021 0.019 0.019

101 102 0.080 0.053 0.053 0.054

101 103 0.082 0.059 0.055 0.053

102 103 0.232 0.201 0.186 0.182

Table 12.8 Root-mean-square error of̂α based onÂ(T ) − 1, using the same simulated
data and counting-time ranges used in Table 12.1. This table provides results for different
counting-time increments within those time ranges (left-most two columns). The counting
times increase geometrically by factors of100.3, 100.2, 100.1 (used in Table 12.1), and100.05,
thereby providing, respectively,3 1

3
, 5, 10, and 20 counting times per decade of the time

range. The top half of the table represents equal weighting, whereas the bottom half represents
weighting inversely proportional to the square root of the counting time. Comparison of the
entries in the four RMSE columns shows that estimator accuracy generally improves with
decreasing counting-time increments (that is, as the number of counting times per decade
increases). Exceptions to this rule occur in a few cases, such as in the second row, where the
fluctuations in the individual simulations result in estimates of the normalized Haar-wavelet
variance that happen, on the whole, to lie further from ideal behavior for increments of100.05

than100.2. A different simulation, with a different set of 100 random seeds, would yield slightly
different results. Counting times incremented by factors of100.2 provide nearly optimal results
at half the computational burden of increments by factors of100.1, and at a quarter the burden of
increments by factors of100.05. Comparing the two weighting schemes reveals that accurately
weighted results equal or exceed equally weighted results, as expected. Finally, comparing
rows shows that a counting-time range of100 ≤ T ≤ 102 proves best for equal weighting,
and that increasing the range improves the accurately weighted results with few exceptions.

= Ê
[
C2

Haar,N (2T, k)
] /

2E[µ]T. (12.19)

Beginning with the bias, Eq. (3.39) yields

Ê
[
C2

Haar,N (2T, k)
]

= [2T (M − 1)]−1
M−2∑

k=0

[Zk(T )− Zk+1(T )]2
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E
{

Ê
[
C2

Haar,N (2T, k)
]}

= [2T (M − 1)]−1
M−2∑

k=0

E
{

[Zk(T )− Zk+1(T )]2
}

= (2T )−1 E
{

[Z0(T )− Z1(T )]2
}

(12.20)

= E
[
C2

Haar,N (T, k)
]
, (12.21)

whereM ≡ int(L/T ), L represents the duration of the data segment, andint(·)
returns the largest integer not greater than its argument. Equation (12.20) follows
from the stationarity of the point process.

Estimates of the Haar-wavelet variance therefore have zero bias, and all error in its
estimate,̂E

[
C2

Haar,N (2T, k)
]
, must derive from its variance. To obtain the variance,

we make use of two further simplifications. First, we assume that wavelet-transform
results are exactly independent although, as we mentioned at the beginning of this
section, theoretical results show that some correlation does remain in the transformed
values, albeit a small amount (Tewfik & Kim, 1992). Second, we consider large
counting timesT , in particularT À E[τ ], so that the counting statistics become
nearly Gaussian. With these simplifications, we obtain

[4T 2(M − 1)2] Var
{

Ê
[
C2

Haar,N (T, k)
]}

=
M−2∑

k=0

M−2∑

l=0

[
E

{
[Zk(T )− Zk+1(T )]2 [Zl(T )− Zl+1(T )]2

}

− E
{

[Zk(T )− Zk+1(T )]2
}

E
{

[Zl(T )− Zl+1(T )]2
}]

[4T 2(M − 1)] Var
{

Ê
[
C2

Haar,N (T, k)
]}

≈
[
E

{
[Z0(T )− Z1(T )]4

}
− E2

{
[Z0(T )− Z1(T )]2

}]
(12.22)

≈
[
3E2

{
[Z0(T )− Z1(T )]2

}
− E2

{
[Z0(T )− Z1(T )]2

}]
(12.23)

= 2E2
{

[Z0(T )− Z1(T )]2
}

= 2T 2 E2
[
C2

Haar,N (2T, k)
]
, (12.24)

where Eqs. (12.22) and (12.23) derive from the whiteness and Gaussian assumptions,
respectively.

Combining Eqs. (12.21) and (12.24) then gives rise to the following simple result
for the square of the coefficient of variation of the Haar-wavelet variance estimate:
1/[2(M − 1)]. Incorporating the assumption that the rate estimate exhibits much
smaller fluctuations than does the Haar-wavelet variance [Eq. (12.19)] leads to a
squared coefficient of variation for the estimated normalized Haar-wavelet variance
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that takes the form
Var

[
Â(T )

]

E2
[
Â(T )

] ≈ T

2(L− T )
, (12.25)

whereagainM ≡ int(L/T ). We use this result to generate the dashed curves in
Fig. 12.1. Taking the logarithm of̂A(T ) yields

ln
[
Â(T )

]
= ln

{
A(T )

[
1 +

Â(T )−A(T )
A(T )

]}

= ln[A(T )] + ln

[
1 +

Â(T )−A(T )
A(T )

]

≈ ln[A(T )] +
Â(T )−A(T )

A(T )
(12.26)

Var
{

ln
[
Â(T )

]}
≈ Var

[
Â(T )−A(T )

A(T )

]

= Var

[
Â(T )
A(T )

]

≈ T

2(L− T )
. (12.27)

Equation(12.26) makes use of the fact thatln(1 + x) ≈ x for x ¿ 1, and remains
valid for T/L ¿ 1; Eq. (12.27) results from Eq. (12.25).

Equation (12.27) provides a simple but fundamental result: the variance of the
logarithm of the normalized Haar-wavelet variance estimate increases linearly with
counting timeT . This makes good sense; since each independent wavelet-transform
value has a duration proportional toT , the number of independent samples in a fixed
length of data varies inversely withT . Thus, the variance of the estimate, which is
inversely proportional to the number of samples, varies in direct proportion toT .

For best accuracy in estimatingα, then, weighting functions should vary inversely
with the square root ofT . We incorporated this weighting function in the entries
reported in the lower half of Table 12.8. The results are indeed superior to those ob-
tained using equal weighting, in all cases. Furthermore, for this weighting increasing
the range of times used in estimatingα almost always yields an improved estimate,
as expected with a proper weighting function. Employing thisT−1/2 weighting
function, and counting times incremented by factors of100.2, we obtain the best per-
formance by using the largest possible range of counting times (100 ≤ T ≤ 102); the
root-mean-square error is 0.019.

We note that the foregoing analysis fails without the use of logarithms. Rearranging
Eq. (12.25) yields the variance of the estimate itself, as a function of counting time
T :

Var
[
Â(T )

]
≈ E2

[
Â(T )

] T

2(L− T )
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≈ [(T/TA)α]2 T/2L

= 1
2T−2α

A L−1T 1+2α

∼ T 1+2α. (12.28)

Thus,fitting a power-law function directly to values of̂A(T ) results in a variance that
increases asT 1+2α. This implies that the optimal weighting function for estimating
α itself depends onα, which violates the spirit of estimating an unknown signal.
We thus employ logarithms and linear fits, rather than direct values ofÂ(T ) and
power-law fits.

Oversampling.We conclude this section by considering oversampled versions of
the normalized Haar-wavelet variance estimate. Figure 3.6b) illustrates the method
we have used to estimate the normalized Haar-wavelet variance to this point; the first
counting duration begins att = 0, with subsequent counting durations immediately
following each other in turn.

Reiterating the construction of the normalized Haar-wavelet variance we obtain

Â(T ) = (M − 1)−1
M−2∑

k=0

[
Zk(T )− Zk+1(T )

]2/[
2TN(L)/L

]

[
2T (M − 1) N(L)/L

]
Â(T )

=
L/T−2∑

k=0

[
2N(kT + T )−N(kT )−N(kT + 2T )

]2
, (12.29)

again withM = int(L/T ). However, the timet = 0 bears no particular significance
to the point processdN(t); beginning the counting durations att = 1

2T ratherthan
at t = 0 is equally valid. In fact, an average of the two yields improved statistics:

2
[
2T (M − 1)N(L)/L

]
Â2×(T )

=
L/T−2∑

k=0

[
2N(kT + 3

2T )−N(kT + 1
2T )−N(kT + 5

2T )
]2

+
L/T−2∑

k=0

[
2N(kT + T )−N(kT )−N(kT + 2T )

]2
, (12.30)

where the notation̂A2×(T ) indicates the average of the variances estimated over two
different sets of counting durations. Continuing this process, one can average results
over four sets of durations that differ in their starting times by1

4T , yielding Â4×(T ):

4
[
2T (M − 1) N(L)/L

]
Â4×(T )

=
L/T−2∑

k=0

[
2N(kT + 7

4T )−N(kT + 3
4T )−N(kT + 11

4 T )
]2
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Time Range RMSE of α̂A−1 from Â(T )− 1
Tmin Tmax 100.2, 1× 100.2, 2× 100.2, 4× 100.05, 1×

100 101 0.030 0.027 0.025 0.028

100 102 0.019 0.018 0.017 0.019

100 103 0.021 0.018 0.017 0.019

101 102 0.053 0.046 0.044 0.054

101 103 0.059 0.048 0.046 0.053

102 103 0.201 0.164 0.154 0.182

Table 12.9 Root-mean-square error of̂α based onÂ(T ) − 1, using the same simulated
data and time ranges as employed for Table 12.1, but with different amounts of oversampling.
Weighting varies asT−1/2 in all cases. The results for counting-time increments of100.2

(labeled1×) and100.05 (labeled1×) coincide with those from Table 12.8. Other columns
also derive from the same data, but make use of staggered counting durations. Computing the
column labeled “100.2, 2×” uses a set of counting durations that begins att = 0, in conjunction
with a second set that begins att = 1

2
T ; the average over all counting durations, from both

sets, forms the estimate of the normalized Haar-wavelet variance. Similarly, the column labeled
“100.2, 4×” makes use of four sets of counting times, beginning att = 0, t = 1

4
T , t = 1

2
T ,

andt = 3
4
T . For each row, double sampling decreases the error, while quadruple sampling

brings little further improvement. Doubly sampled versions at a counting-time increment of
100.2 consistently yield results superior to those obtained using singly sampled versions at a
counting-time increment of100.05, although the latter imposes twice the computational load.

+
L/T−2∑

k=0

[
2N(kT + 3

2T )−N(kT + 1
2T )−N(kT + 5

2T )
]2

+
L/T−2∑

k=0

[
2N(kT + 5

4T )−N(kT + 1
4T )−N(kT + 9

4T )
]2

+
L/T−2∑

k=0

[
2N(kT + T )−N(kT )−N(kT + 2T )

]2
. (12.31)

The results presented in Table 12.9 illustrate the improvement in fractal-exponent
estimation accuracy obtained by using such oversampling. Having established in
Table 12.8 that a weight ofT−1/2, a counting time increment of100.2, and subtract-
ing unity fromÂ(T ) optimizes the estimation process, we display results in Table 12.9
for this choice of parameters at2× and4× oversampling. We also reproduce from
Table 12.8 results for increments of100.2 and100.05 without oversampling (1×).
For all six choices of counting-time ranges,2× oversampling turns out to provide
a reduced root-mean-square error, whereas4× oversampling further improves per-
formance only slightly. Both oversampling schemes yield performance superior to
that obtained by using a counting-time increment of100.05 (right-most column of
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Table 12.8), despite the fact that this latter increment has a computational load equal
to that of an increment of100.2 at4×oversampling. Holding the ratio of oversampling
constant, the performance largely resembles that portrayed in Table 12.8, thereby con-
firming the choice of100.2 for the counting-time increment, both for oversampling
and for the original method. Similar results also obtain for estimates that are based
on Â(T ) rather thanÂ(T )− 1 (not shown).

Overall, we conclude that optimal fractal-exponent estimation mandates the fol-
lowing, with the choices largely independent of each other: (1) a counting-time
increment of100.2, (2) estimates based on̂A(T ) − 1, (3) weighting in accordance
with T−1/2, and (4) counting-time ranges of100–102 or 103.

12.3.9 Rate spectrum

The rate-based spectrumSλ(f, T ) for a point process has an estimate known as the
rate-based periodogram (see Sec. 3.4.5). Like the normalized Haar-wavelet variance
examined in Secs. 12.2.3 and 12.3.8, this measure has no bias. Furthermore, errors
about the true value are multiplicative, independent, and have the same statistics for all
frequenciesf (Oppenheim & Schafer, 1975, p. 547).7 This multiplicative character
suggests that the logarithm of the periodogram renders the errors additive with similar
statistics. The independence and uniformity of the statistics with frequency suggest
equal weighting.

What set of frequencies provides the best results? Although any frequency spacing
will yield information about the spectrum of the underlying point process, linear
spacing is far superior from a practical perspective: it permits the use of fast Fourier
transform techniques, thereby vastly reducing the computational load. We make
use of the rate spectrum rather than the point-process spectrum since fast Fourier
transforms call for discrete-time data. As shown in Eq. (3.67), the two measures bear
a close resemblance to each other for frequencies much lower than the inverse of the
counting time. For the resemblance to hold, the Fourier transform must have at least
2fL elements, wheref is the largest frequency of interest, andL is the duration of
the data under study.

Since Fourier transforms operate on periodic sequences, the discontinuity between
the first and last counting windows can introduce spurious components into the pe-
riodogram, thereby blurring fractal features. We examine this effect in detail in
Sec. A.8.1. The effect of this discontinuity decays with frequency asf−2, making
good estimation of processes withα > 2 difficult. Although values ofα in excess
of two rarely occur, as indicated in Sec. 5.2.2, the use of a simple Hanning window
(Oppenheim & Schafer, 1975, p. 242) serves to increase the theoretical limit from
α = 2 to α = 6. Figure 12.9 displays the rate spectrum estimate obtained with a
Hanning window (dashed curve) and with a rectangular window (no windowing, solid
curve). The simulated data were identical to those used to produce Figs. 12.1–12.7.

7 While this reference presents a proof only for white Gaussian noise, these results hold to an excellent
approximation for the situation at hand.
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THEORYHANNING WINDOWRECTANGULAR WINDOWPERIODOGRAM
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Fig. 12.9 Estimated rate spectrum (periodogram)Ŝλ(f, T ) vs. frequencyf , based on the
same simulations as those used to generate Figs. 12.1–12.7. For each simulation, we calculated
its rate estimate using a counting time ofT = L/218 ≈ 0.0401 time units (bearing in mind that
L differs among the simulations). We then calculated the square magnitude of the fast Fourier
transform of this rate estimate. Next, we collected values into blocks whose frequencies differed
by less than a factor of 1.02, and plotted a single point comprising the mean of the frequencies
and the mean of the spectral estimate. Finally, we averaged all 100 curves together, both
ordinate and abscissa. We used two different windows: a Hanning (raised cosine) window, and
a rectangular window equal to the durationL of the simulation (no windowing). The theoretical
results directly follow Eq. (5.44a). The Hanning window yields a single large spurious value
at f = 1/L which we removed since it arises from the window itself. Otherwise, the results
for both windows closely follow the theoretical results. The dip in the simulated curve near
f = 3 derives from the discrete nature of the rate process used to generate the simulations (see
Sec. 12.2.3).

We calculated the square magnitude of the Fourier transform of the rate estimate for
each simulation, then averaged over frequencies within a factor of 1.02 of each other
and, finally, averaged all 100 curves together. Except for a large peak arising from
the cosine term in the Hanning window that we removed, the estimated spectra for
both windows closely follow the theoretical form associated with Eq. (5.44a) (dot-
ted curve). We conclude that windowing does not provide an advantage for these
particular simulations, most likely because the fractal exponentα = 0.8 lies below
2.

We next examined the fractal-exponent statistics based on the collection of indi-
vidual simulations. In analogy with the method used for estimating the normalized
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Haar-wavelet variance, we carried out a least-squares fit on the logarithm of the pe-
riodogram vs. the logarithm of frequency, over several ranges of frequencies, using
equal weighting. For fits that include high frequencies (103/L and104/L), the high-
frequency asymptotelimf→∞ Sλ(f, T ) = E[µ] causes the rate of decay to decrease
with frequency, thereby leading to negative bias. Fits limited to low frequencies, on
the other hand, suffer from excessive variance since fewer frequencies exist in these
ranges. Overall, the best performance obtains for1/L ≤ f ≤ 103/L, but with a
root-mean-square error of 0.103, it remains poor.

In an attempt to improve matters, we also performed fits to the periodogram after
subtracting the estimate of the high-frequency asymptote,Ê[µ]. However, as a re-
sult of the variance inherent in the periodogram, this occasionally yielded nonpositive
values. To rectify this, we employed averaging and thresholding. Specifically, we av-
eraged the value of̂Sλ(f, T ) at a frequencyf = n/L with then/16 values following
it in frequency, and then subtracted the estimated asymptoteÊ[µ]. Finally, we re-
placed all numbers less thanεÊ[µ] with εÊ[µ], whereε = 2−12 = 0.000244140625,
and performed a least-squares fit on the modified values. Indeed, removal of the
high-frequency asymptote leads to a substantial improvement in the results. Larger
frequency ranges generally yielded better accuracy, as was the case for the normal-
ized Haar-wavelet variance with proper weighting. However, the smallest root-mean-
square error, 0.059, occurred for the frequency range10/L ≤ f ≤ 103/L. The results
of these simulations appear in Table 12.10. We note that our results are somewhat
idiosyncratic, given the parameters used for averaging (16 adjacent frequency bins
andε = 2−12); as with the interval spectrum, changing these values would likely
lead to a different result.

While analytical results for the bias prove difficult to obtain in general, relatively
simple results are available for the standard deviation, given a number of assumptions
(Lowen & Teich, 1995). We proceed to derive this result. Starting with the sequence
of counts{Zk(T )} obtained from a fractal-based point process, we take its Fourier
transform. Each element of this transform comprises a sum of a relatively large
number of terms (the counts), multiplied by trigonometric functions of magnitude
not exceeding unity. This suggests the use of the central limit theorem, in which
case the transform approaches a circularly symmetric complex Gaussian process. We
assume that the Gaussian limit holds exactly. Converting to a spectrum estimate
yields

Ŝ(n/L) = E[µ]
[
1 + (n/fSL)−α

]
exp(εn) , (12.32)

wheren denotes the discrete index in the fast Fourier transform andεn represents some
small error term near zero. For estimates of white noise, the errors for different indices
n are independent and have a standard deviation equal to the mean (Oppenheim &
Schafer, 1975); we assume that this holds for the fractal-rate process under study as
well. We then have

E[exp(εn)] = 1

E
{
[exp(εn)− 1]2

}
= 1

E
{
[exp(εn)− 1] [exp(εm)− 1]

}
= 0, n 6= m.

(12.33)
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α̂S−E[µ] from

Freq.Range α̂S from Ŝλ(f, T ) Ŝλ(f, T )− Ê[µ] Calc.

fmin fmax Bias SD RMSE Bias SD RMSE SD

100 101 −0.026 0.530 0.531 0.023 0.607 0.608 0.578

100 102 −0.003 0.130 0.130 −0.151 0.142 0.207 0.147

100 103 −0.096 0.036 0.103 −0.055 0.041 0.069 0.045

100 104 −0.322 0.014 0.322 0.076 0.028 0.081 0.014

101 102 0.007 0.196 0.196 −0.172 0.224 0.283 0.222

101 103 −0.108 0.040 0.115 −0.044 0.041 0.059 0.050

101 104 −0.330 0.015 0.331 0.081 0.029 0.086 0.014

102 103 −0.149 0.071 0.165 −0.016 0.064 0.066 0.077

102 104 −0.361 0.016 0.362 0.101 0.033 0.106 0.016

103 104 −0.439 0.022 0.439 0.172 0.060 0.182 0.025

Table 12.10 Performance of fractal-exponent estimatesα̂ for 100 different simulations of
a fractal-Gaussian-process-driven Poisson process obtained using estimates of the rate spec-
trum (periodogram)̂Sλ(f, T ). The simulations were the same as those employed to pro-
duce Table 12.1. We counted the number of events falling into215 windows of equal length
T = L/215 ≈ 0.320 (bearing in mind thatL differs among the simulations), calculated the
Fourier transform, and took the square magnitude. The first two columns specify the range of
frequencies employed for calculatinĝSλ(f, T ). We express frequency in terms of its prod-
uct with the duration of the simulation,L; thus, the first row corresponds to the frequency
range1/L ≤ f ≤ 10/L. The next three columns represent the bias, standard deviation (SD),
and resulting root-mean-square error (RMSE) for calculations employing the rate spectrum
Ŝλ(f, T ). We next sought to remove the effects of the high-frequency asymptoteÊ[µ]. Since
the rate spectrum fluctuates about this asymptote, many of the resulting differences would lie
below zero, making calculation of the logarithm meaningless. We therefore employed averag-
ing and thresholding. Specifically, we averaged the value ofŜλ(f, T ) at a frequencyf = n/L
with then/16 values following it in frequency, and then subtracted the estimated asymptote
Ê[µ]. Finally, to ensure positive values, we replaced all numbers less thanεÊ[µ] with εÊ[µ],
whereε = 2−12. We estimated the fractal exponent employing these modified values; the cor-
responding results appear in columns 6–8. Subtracting the high-frequency asymptote indeed
reduces the bias significantly, returning reduced root-mean-square errors. Moreover, increas-
ing the range generally improves the results, as we observed in the properly weighted outcomes
for the normalized Haar-wavelet variance presented in the lower half of Table 12.8. The right-
most column presents the predicted theoretical values for the standard deviation; results for
the corresponding simulations stand two columns to its left. The best results (minimum root-
mean-square error) for̂Sλ(f) obtain by using1/L ≤ f ≤ 103/L, whereas for̂Sλ(f)− Ê[µ]

the optimal range is10/L ≤ f ≤ 103/L. While the normalized Haar-wavelet variancêA(T )
yields superior results, it does incur a larger computational burden.
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Proceeding with the analysis, we estimateα from Ŝ(n/L). Subtracting the constant
termE[µ] from Eq. (12.32), and taking logarithms of both independent and dependent
variables, we define

xn ≡ ln(n)

yn ≡ ln
{
Ŝ(n/L)− E[µ]

}

= ln (E[µ]) + α ln(fSL)− α ln(n) + εn.

(12.34)

The estimate ofα simply becomes the covariance between{x} and{y} divided
by the variance of{x} (Lowen & Teich, 1993a):

α̂S =

(M − 1)−1
M∑

n=1

xn yn −M−1(M − 1)−1

(
M∑

n=1

xn

)(
M∑

m=1

ym

)

(M − 1)−1
M∑

n=1

x2
n −M−1(M − 1)−1

(
M∑

n=1

xn

)2

= α +

(
M∑

n=1

εn

)(
M∑

m=1

ln(m)

)
−M

M∑
n=1

εn ln(n)

M
M∑

n=1

ln2(n)−
(

M∑
n=1

ln(k)

)2 , (12.35)

with M = int(L/T ), the number of counts as defined in Eq. (12.4). Equation (12.35)
has a mean ofα by construction, as it should. After some algebra, an expression for
the variance emerges:

Var[α̂S ] = Var[ε] ·



M∑
n=1

ln2(n)−M−1

(
M∑

n=1

ln(n)

)2


−1

. (12.36)

The variance ofε depends on the distribution of the errors{εn} themselves, while
the rest of Eq. (12.36), which is a deterministic function ofM , approaches1/M
asM → ∞. For the circularly symmetric Gaussian form assumed for the Fourier
transform of{Zk(T )}, the spectrum estimatêS(n/L) has an exponential distribution,
which provides

Var[ε] =
∫ ∞

0

ln2(t) exp(−t) dt

= 1
6π2 + C 2

Euler

.= 1.978, (12.37)

whereCEuler
.= 0.5772156649 denotes Euler’s constant.

The right-most column in Table 12.10 presents the expected theoretical values for
the standard deviation, calculated from Eqs. (12.36) and (12.37). Here we substitute
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fmaxL andfminL for the upper limit (M ) and lower limit (unity), respectively, in
the sums in Eq. (12.36), and replaceM−1 with fmaxL + 1 − fminL. Results for
the corresponding simulations for each frequency range stand two columns to the
left. While none of the assumptions employed in the derivation provided above holds
exactly, the calculated and simulated values nevertheless agree quite well, especially
for more constrained frequency ranges (fmaxL < 104).

12.4 COMPARISON OF MEASURES

Based on the results provided in Sec. 12.3, we conclude that the normalized Haar-
wavelet variance and the rate spectrum prove to be the most useful measures for
estimating the exponent of an unidentified fractal-based point process. Furthermore,
as shown in Sec. 5.2, these two measures are valid over the full range of fractal
exponents normally encountered,0 < α < 2.

Detrended fluctuation and the interval-based wavelet variance also perform well
as estimators for the point process at hand, and the optimization techniques we used
for the normalized Haar-wavelet variance would presumably provide comparable
improvements for these two measures as well. Nevertheless, as with all interval-
based approaches, they cannot reliably detect fractal behavior, let alone quantify it,
so we do not recommend their general use.

The normalized Haar-wavelet variance returns the best performance, with a root-
mean-square error of0.018, in comparison with0.059 for the rate spectrum, under
optimal conditions for the estimation problem at hand (appropriate weighting, choice
of counting time increment, oversampling, and subtraction of short time and high-
frequency asymptotes). However, the former measure has significantly more compu-
tational burden than the latter. The ultimate choice of measure thus appears to depend
on the relative costs of estimation error and processing time.

A number of other approaches exist for estimating fractal exponents (see, for exam-
ple, Beran, 1992, 1994; Taqqu et al., 1995), but these expect real-valued, discrete-time
sequences, generally with Gaussian statistics. Although counting turns a point pro-
cess into a positive-integer-valued discrete-time sequence, the question then becomes
the choice of counting time. Short counting times yield statistics far from a Gaussian
form, whereas long counting times fail to capture the short-time-scale information
inherent in a point process; this issue bears some similarity to the choice of range
for a dependent variable, mentioned at the beginning of this chapter. In general,
discrete-time methods do not appear to offer the performance and robustness desired
in a fractal-exponent estimator for point processes. However, two notable exceptions
exist. First, for extremely long point-process realizations, the very large numbers
of events renders the choice of counting time far less critical, so that conversion of
a data set to a discrete-time form becomes relatively straightforward. Second, for
calculation of the rate-based spectral estimate, we employ an effective counting time
L/M , with L again the duration of the realization andM the size of the (fast) Fourier
transform used. In this case, the choice of counting time (or, equivalently,M ) proves
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relatively unimportant as long as the counting time does not exceed the Nyquist limit
for frequencies of interest.

Other measures considered in this Chapter have made use of counting sequences as
intermediate steps, but have avoided the limitations associated with choosing a fixed
value of counting time. Little advantage appears to accrue from using traditional
fractal methods based on discrete-time sequences, which confirms our conclusion
that the normalized Haar-wavelet variance and the rate spectrum are the measures of
choice.

We offer a final caveat in closing this chapter. We chose the simulation set analyzed
because of its generic nature. The fractal-Gaussian-process-driven Poisson process
characterizes a number of observed point processes; furthermore, superpositions of
many fractal-based point processes converge to it. The valueα = 0.8 offers a
significant range of variation of the various measures with time and frequency, yet it
lies sufficiently below unity to preclude problems with measures that fail forα ≥ 1.8

However, just asa priori information heavily influences the identification of a point
process, as described in Sec. 12.1, so too does prior information affect the choice of
an optimal measurement statistic.

While we expect that the results established here will prove useful in many circum-
stances, thea priori information available in all possible experiments spans far too
great a range for one approach to yield optimal results in all cases. Different applica-
tions will surely involve different ranges ofα; the estimation of other fractal-based
parameters, such as fractal onset times and frequencies, are certainly of interest, and
more subtle features of various measures will come to the fore. Rather than attempting
to catalog such a vast parameter space, we have chosen instead to direct our presen-
tation to investigating how well various statistical measures function for estimating
the fractal exponent of an unidentified fractal-based point processes, and, most im-
portantly, to setting forth a collection of techniques and mathematical relations that
should find use in a broad variety of applications.

Problems

12.1 Discriminating fractal-rate point processes via their interevent-interval den-
sities Suppose we have a realization of a fractal-rate point process, and we know
that it derives from a Poisson process driven by either: (1) a fractal Gaussian process,
(2) fractal binomial noise, or (3) fractal shot noise. Suppose further that processes (2)
and (3) approach process (1) fairly closely, but not exactly, of course. The measures
used in this chapter to quantify fractal behavior cannot distinguish among these three
possibilities since all three processes generate power-law forms akin to those provided
in Eq. (5.44) (see Sec. 12.1). Discuss how the interevent-interval probability density
(or distribution) might assist us in determining which of the three rate processes is

8 We previously examined the normalized Haar-wavelet variance and spectrum for this process, as well as
for the fractal-Gaussian-process-driven integrate-and-reset process (with jitter), forα = 0.2, 0.8, and 1.5
(Thurner et al., 1997).
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responsible for generating the realization at hand. How does the situation differ if the
three rate processes drive an integrate-and-reset kernel instead?

12.2 Robustness
/

error tradeoff in estimation In Sec. 12.2 we pointed out that
a tradeoff exists between robustness and error. For nearly all estimation tasks, some
estimators provide excellent results for a restricted class of data, whereas others yield
useful results for a wider range of data at the cost of somewhat greater overall error.
Discuss this issue in the context of estimating the fractal exponents for a fractal
renewal process and for a fractal-shot-noise-driven Poisson process.

12.3 Bias
/

variance tradeoff in estimation In addition to the tradeoff between
robustness and error discussed in Prob. 12.2, a tradeoff also exists between bias and
variance in many estimators. Demonstrate this tradeoff explicitly for the estimation
of α̂ from the normalized Haar-wavelet varianceÂ(T ) by computing the correlation
coefficient between the absolute values in the third and fourth columns of Table 12.1,
which represent the bias and standard deviation, respectively. Repeat this calculation
for the estimation of̂α from Â(T )−1 by making use of the sixth and seventh columns
of Table 12.1. What might account for the difference in the correlation coefficients
obtained in the two cases?

12.4 Coincidence-rate and spectrum estimationDiscuss the problems involved
in attempting to construct an estimate of the coincidence rateG(t), and show that
addressing these problems leads to the count-based autocorrelationRZ(k, T ) or a
similar measure. Also show that the point-process spectrumSN (f) does not suffer
from the same shortcoming. Why then do we employ the rate spectrumSλ(f, T )
instead ofSN (f)?

12.5 Bias in normalized-variance estimatesFor a fractal-based point process
with 0 < α < 1, Eq. (12.6) indicates that the normalized variance will decrease for
counting timesT near the duration of the recordingL.

12.5.1. Use this equation to find the counting time at which the normalized vari-
ance achieves a maximum, and express this counting time in terms of the fractal onset
timeTF , the duration of the recordingL, and the fractal exponentα.

12.5.2. Simulate a fractal-based point process, say the fractal-Gaussian-process-
driven Poisson process, and calculate the normalized variance for the largest value
of T possible. Plot the results of the simulations (include both mean and mean
±1-standard deviation values) as well as the predictions of Eqs. (5.44b) and (12.6),
choosing a plotting format that highlights the differences between the two predictions.

12.6 Effect of averaging on spectral estimatesTo obtain useful nonparametric
estimates of the spectrum (rather than estimates of the fractal exponentα that we have
been heretofore pursuing), it is common to averagen adjacent values of the estimated
spectrum, withn a large number that does not vary with frequency. One can also
divide the data into blocks, compute spectrum estimates of each block separately, and
then average these estimates across blocks. Explain why we do not use this approach
in estimating the fractal exponent.
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12.7 Asymptote subtraction for improved fractal-exponent estimationAll of the
count-based measures employed in this chapter attain a constant value in the high-
frequency

/
short-time limit. For example, Eq. (3.59) shows that the point-process

spectrum approaches the mean event rate at high frequencies, whereas Eq. (3.42)
indicates that both the normalized variance and the normalized Haar-wavelet variance
attain a value of unity for short counting times. It is tempting to subtract these limits
from the associated measures to extend the useful range of fractal scaling and to
thereby improve the performance of the fractal-exponent estimators. We have, in
fact, done just that for the periodogram in Sec. 12.3.9, and for the normalized Haar-
wavelet variance in Secs. 12.2.3 and 12.3.8. Cite two reasons for caution in applying
this approach to real data sets.

12.8 Fractal behavior in a simulated fractal renewal processSimulate a number
of runs of a fractal renewal process (see Chapter 7) and an equal number of runs of a
homogeneous Poisson process (see Sec. 4.1), with the same mean interevent interval
(chooseE[τ ] = E[µ] = 1 for simplicity). Selectγ = 3

2 , which leads toα = 1
2 by

virtue of Eq. (7.9). This value ofγ lies within the range1 < γ < 2, which limits
variation, as described in Sec. 7.1.3. Choose abrupt cutoffs withB/A = 106 to
ensure the presence of fractal behavior over a wide range of times and frequencies;
this yieldsA = 1.001001/3 = 0.333667, B = 0.333667×106, andL = 106, which
gives an expected number of eventsE[N(L)] = 106 [see Eq. (7.2)]. Carry out 100
simulations of this process and average the results to obtain accurate statistics.9

Show that the rate periodogram (spectrum estimate) and the normalized Haar-
wavelet variance accurately characterize fractal behavior in the fractal renewal process
and properly reveal its absence in the homogeneous Poisson process. Also show that
the rescaled range statistic, an interval-based measure, cannot distinguish between
these two renewal processes and therefore does not reliably detect fractal behavior in
general.

9 Producing a smooth version of this curve that accurately follows its expected value requires inordinate
simulation resources (see Prob. 7.6).
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